Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (5): 463-468    DOI: 10.11902/1005.4537.2019.203
Current Issue | Archive | Adv Search |
Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere
LI Ziyun1, WANG Gui1, LUO Siwei1, DENG Peichang2, HU Jiezhen1(), DENG Junhao1, XU Jingming1
1 College of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
2 College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
Download:  HTML  PDF(15727KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The EH36 ship plate steel was exposed for 15, 30, 90, 180 and 360 d respectively in the atmosphere with high humidity, high heat, high salinity and strong radiation at the Zhanjiang marine atmospheric corrosion test station situated in the south of China. The corrosion behavior of different exposure periods were characterized by means of corrosion weight loss method, polarization curve measurement, scanning electron microscopy with energy dispersive spectroscopy and X-ray diffractometer. The results show that the corrosion rate of EH36 ship plate steel increases first and then decreases. After exposure for 360 d, Cr, Ni and Si elements diffuse into and uniformly distribute in the rust scale, which then improves the corrosion resistance of the steel. After exposure for 180 and 360 d, the formed rust scales composed of γ-FeOOH, β-FeOOH, Fe3O4 and α-FeOOH. While the one corresponded to 360 d exposure has more α-FeOOH and less β-FeOOH. In the rust scale of EH36 ship steel exposed for 360 d the ratio of α/γ=0.615, however, a stable protective rust scale has not yet appeared by this time.

Key words:  EH36 ship plate steel      tropical marine atmosphere      corrosion      polarization curve     
Received:  13 November 2019     
ZTFLH:  TG172.3  
Fund: National Natural Science Foundation of China(51801033);Guangdong University Students "Sail of the Sea-sailing Plan" Project(qhjh2017zr06)
Corresponding Authors:  HU Jiezhen     E-mail:  jiezhen0520@163.com

Cite this article: 

LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 463-468.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.203     OR     https://www.jcscp.org/EN/Y2020/V40/I5/463

Fig.1  Corrosion rate curve of EH36 ship plate steel with exposure time
Fig.2  Macroscopic surface morphologies of EH36 ship plate steel after exposed for 15 d (a), 30 d (b), 90 d (c), 180 d (d) and 360 d (e)
Fig.3  Surface morphologies of EH36 ship plate steel after exposed for 15 d (a), 30 d (b), 90 d (c), 180 d (d) and 360 d (e)
Fig.4  Corrosion morphologies (a) and element distribution (b~f) of the cross section of EH36 ship steel after exposed for 180 d
Fig.5  Corrosion morphologies (a) and element distribution (b~f) of the cross section of EH36 ship steel after exposed for 360 d
Fig.6  XRD spectrum of rust layer of EH36 ship plate steel after exposed for different time
Fig.7  Polarization curves of EH36 ship plate steel after exposed for different time
Exposure time / dEcorr / mVIcorr / μA
15-333.025.29
180-519.2519.8
360-392.289.58
Table 1  Corrosion potential and current of EH36 ship plate steel after exposed for different time
[1] Wang J, Li T Z. Development and production of low carbon high strength and toughness EH36 hull plate with TMCP technology [J]. Shandong Metall., 2016, 38(4): 5
(王杰, 李廷芝. 低碳型EH36高强韧性船板钢开发生产 [J]. 山东冶金, 2016, 38(4): 5)
[2] Li Z S. Study on microstructure and property of 360 MPa grade ship plate steel [D]. Ji'nan: Shandong University, 2010
(李贞顺. 360 MPa级船板钢的组织与性能研究 [D]. 济南: 山东大学, 2010)
[3] Yang Y, Fan Y, Zhang W L. Research on corrosion behavior of EH36-NS steel in the simulated marine atmosphere [J]. NISCO Technol. Manag., 2015, (3): 6
(杨英, 范益, 张万灵. EH36-NS在模拟海洋大气环境下的腐蚀行为研究 [J]. 南钢科技管理, 2015, (3): 6)
[4] Tang D, Zhang M J, Wu H B, et al. Atmospheric corrosion resistance of EH36 ocean platform steel [J]. Corros. Prot., 2012, 33: 558
(唐荻, 张明洁, 武会宾等. EH36级平台钢耐海洋大气腐蚀性能 [J]. 腐蚀与防护, 2012, 33: 558)
[5] Gao H L, Tang W, Luo D, et al. Corrosion analysis of EH36 corrosion resistant steel for cargo oil tank [J]. Met. Mater. Metall. Eng., 2016, 44(4): 10
(高海亮, 汤伟, 罗登等. 工业试制油轮货油舱用耐蚀钢EH36的耐蚀性分析 [J]. 金属材料与冶金工程, 2016, 44(4): 10)
[6] Deng J H, Hu J Z, Deng P C, et al. Effect of oxide scales on initial corrosion behavior of SPHC hot rolled steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 331
(邓俊豪, 胡杰珍, 邓培昌等. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 331)
[7] Li Z Y, Deng P C, Hu J Z, et al. Corrosion law of cold rolled steel plate in tropical ocean atmospheric environment [J]. Iron Steel, 2019, 54(9): 99
(李子运, 邓培昌, 胡杰珍等. 热带海洋大气环境冷轧钢板锈蚀规律 [J]. 钢铁, 2019, 54(9): 99)
[8] State Bureau of Technical Supervision. GB/T 14165-1993 Ferrous metals- Test method of atmospheric exposure [S]. Beijing: China Standard Press, 1993
(国家技术监督局. GB/T 14165-1993黑色金属室外大气暴露试验方法 [S]. 北京: 中国标准出版社, 1993)
[9] State Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 16545-2015 Corrosion of metals and alloys-Removal of corrosion products from corrosion test specimens [S]. Beijing: China Standard Press, 2016
(中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 16545-2015金属和合金的腐蚀腐蚀试样上腐蚀产物的清除 [S]. 北京: 中国标准出版社, 2016)
[10] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corros. Sci., 1999, 41: 1687
[11] Xiao K, Dong C F, Li X G, et al. Atmospheric corrosion behavior of weathering steels in initial stage [J]. J. Iron Steel Res., 2008, 20(10): 53
(肖葵, 董超芳, 李晓刚等. 大气腐蚀下耐候钢的初期行为规律 [J]. 钢铁研究学报, 2008, 20(10): 53)
[12] Cano H, Neff D, Morcillo M, et al. Characterization of corrosion products formed on Ni 2.4 wt%-Cu 0.5 wt%-Cr 0.5 wt% weathering steel exposed in marine atmospheres [J]. Corros. Sci., 2014, 87: 438
[13] Diaz I, Cano H, De La Fuente D, et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity [J]. Corros. Sci., 2013, 76: 348
[14] Hœrlé S, Mazaudier F, Dillmann P, et al. Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles [J]. Corros. Sci., 2004, 46: 1431
[15] Ishikawa T, Takeuchi K, Kandori K, et al. Transformation of γ-FeOOH to α-FeOOH in acidic solutions containing metal ions [J]. Colloids Surf., 2005, 266A: 155
[16] Asami K, Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years [J]. Corros. Sci., 2003, 45: 2671
[17] Wei W, Cheng X Q, Hou H X, et al. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere [J]. Appl. Surf. Sci., 2018, 436: 80
[18] Zheng Y Y, Zou Y, Wang J. Research progress on corrosion of carbon steels under rust layer in marine environment [J]. Corros. Sci. Prot. Technol., 2011, 23: 93
(郑莹莹, 邹妍, 王佳. 海洋环境中锈层下碳钢腐蚀行为的研究进展 [J]. 腐蚀科学与防护技术, 2011, 23: 93)
[19] Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
[20] Shi Z J, Wang L, Chen N, et al. Development and treatment of surface rust stabilization technology of weathering steel [J]. Corros. Sci. Prot. Technol., 2015, 27: 503
(石振家, 王雷, 陈楠等. 耐候钢表面锈层及其稳定化处理现状与发展趋势 [J]. 腐蚀科学与防护技术, 2015, 27: 503)
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!