Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (6): 545-552    DOI: 10.11902/1005.4537.2019.215
Current Issue | Archive | Adv Search |
Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃
WANG Lei1(), DONG Junhua2, HAN Da3, LIANG Jiankun1, LI Quan1, KE Wei4
1. School of Life and Health Science, Kaili University, Kaili 556011, China
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. School of Life Science, Beijing Institute of Technology, Beijing 100000, China
4. Environmental Corrosion Centre of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(13837KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Cu segregation in Cu-containing steel was investigated after high temperature treatment at 1150 ℃ in air for different time. It is found that Cu segregation occurred both at the interface oxide scale/steel matrix and at grain boundaries of the sub-surface of the substrate beneath the interface, which was caused by the preferential oxidation of Fe and the decarburization, thereby resulted in the sharply decrease of the cementite content near the steel surface. It also found that the Cu content in the area beneath the interface oxide scale/steel matrix for the heat treated steel is lower than that of the steel before subjecting to heat treatment.

Key words:  Cu-containing steel      high temperature treatment      Cu segregation      decarburization     
Received:  17 November 2019     
ZTFLH:  TG142  
Fund: Doctoral Scientific Research Startup Foundation from Kaili University(BS201814);National Natural Science Foundation of China(31760191);Reform Project of Teaching Content and Curriculum System in Colleges and Universities of Guizhou Province(JG202018);Reform Project of Teaching Content and Curriculum System in Colleges and Universities of Guizhou Province(2018520134)
Corresponding Authors:  WANG Lei     E-mail:  2015163582@qq.com

Cite this article: 

WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 545-552.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.215     OR     https://www.jcscp.org/EN/Y2020/V40/I6/545

Fig.1  Optical microstructure of the Cu-containing steel
Fig.2  Optical microstructures of the steel/oxide interfaces of the test steel after treatments in air at 1150 ℃ for 5 min (a), 10 min (b), 20 min (c), 30 min (d) and 60 min (e)
Fig.3  Optical microstructures of the surface layers of the steel after treatments in reduction atmosphere at 1150 ℃ for 5 min (a), 10 min (b), 20 min (c), 30 min (d) and 60 min (e)
Fig.4  BSE image of the steel/oxide interface of the test steel after treatment for 20 min in air at 1150 ℃ (a), and the distributions of O (b), Fe (c), Cu (d), Si (e), P (f), Mn (g) and S (h)
Fig.5  BSE image of the steel/oxide interface of the test steel after treatment for 20 min in reduction condition at 1150 ℃ (a), and the distributions of O (b), Fe (c), Cu (d), Si (e), P (f), Mn (g) and S (h)
Fig.6  SEM image (a) and EDX line scannings of element Fe (b), O (c), Mn (d), Cu (e), C (f) and Si (g) at the steel/scale interface in a hot-shortness area of the steel after hot rolling in air at high temperature
Fig.7  EPMA results of Cu content in pearlite and ferrite in the Cu containing steel
Fig.8  Schematic drawings of decarburization at the steel/oxide interface and Cu precipitation induced by oxidation of Fe after high temperature treatment in air
[1] Speller F N. Corrosion, Causes and Prevention [M]. 3rd Ed. New York: McGraw-Hill Book Co., 1951: 106
[2] Dong J H. Rusting evolution of Mn-Cu alloying steel in a simulated coastal environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 261
(董俊华. Mn-Cu低合金钢在模拟海岸大气条件下的锈蚀演化规律 [J]. 腐蚀科学与防护技术, 2010, 22: 261)
[3] Townsend H E. Effects of alloying elements on the corrosion of steel in industrial atmospheres [J]. Corrosion, 2001, 57: 497
[4] Liu G C, Dong J H, Han E-H, et al. Influence of Cu and Mn on corrosion behavior of low alloy steel in a simulated coastal environment [J]. Corros. Sci. Prot. Technol., 2008, 20: 235
(刘国超, 董俊华, 韩恩厚等. Cu、Mn的协同作用对低合金钢在模拟海洋大气环境中腐蚀的影响 [J]. 腐蚀科学与防护技术, 2008, 20: 235)
[5] Russell K C, Brown L M. A dispersion strengthening model based on differing elastic moduli applied to the iron-copper system [J]. Acta Metall., 1972, 20: 969
[6] Ke W, Dong J H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metall. Sin., 2010, 46: 1365
(柯伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究 [J]. 金属学报, 2010, 46: 1365)
[7] Hao X H, Dong J H, Wei J, et al. Influence of microstructure of AH32 corrosion resistant steel on corrosion behavior [J]. Acta Metall. Sin., 2012, 48: 534
(郝雪卉, 董俊华, 魏洁等. AH32耐蚀钢显微组织对其腐蚀行为的影响 [J]. 金属学报, 2012, 48: 534)
[8] Lu Y F, Dong J H, Ke W. Corrosion evolution of low alloy steel in deaerated bicarbonate solutions [J]. J. Mater. Sci. Technol., 2015, 31: 1047
[9] Hao X H, Dong J H, Wei J, et al. Effect of Cu on corrosion behavior of low alloy steel under the simulated bottom plate environment of cargo oil tank [J]. Corros. Sci., 2017, 121: 84
[10] Shao W R, Wang Y L, Chen N J, et al. Effect of Cu segregation on crack in CSP hot rolled strip [J]. J. Chin. Electr. Microsc. Soc., 2002, 21: 731
(邵伟然, 王元立, 陈南京等. CSP工艺热轧钢带中Cu的偏聚对裂纹的影响 [J]. 电子显微学报, 2002, 21: 731)
[11] LeMay I, Schetky L M. Copper in Iron and Steel [M]. New York: John Wiley & Sons, 1982: 45
[12] Li Y, Song B, Mao J H, et al. Copper precipitation behavior in Cu-Fe alloys [J]. J. Univ. Sci. Technol. Beijing., 2009, 31: 579
(李岩, 宋波, 毛璟红等. Fe-Cu合金体系中Cu析出规律 [J]. 北京科技大学学报, 2009, 31: 579)
[13] Salter W J M. Effects of alloying elements on solubility and surface energy of copper in mild steel [J]. J. Iron Steel Inst., 1966, 204: 478
[14] Hydrean P P, Kitchin A L, Schaller F W. Hot rolling and heat treatment of Ni-Cu-Cb (Nb) steel [J]. Metall. Trans., 1971, 2: 2541
[15] Nicholson A, Murray J D. Surface hot shortness in low-carbon steel [J]. J. Iron Steel Inst., 1965, 203: 1007
[16] Melford D A. Surface hot shortness in mild steel [J]. J. Iron Steel Inst., 1962, 200: 290
[17] Suzuki H G. Strain rate dependence of Cu embrittlement in steels [J]. ISIJ Int., 1997, 37: 250
doi: 10.2355/isijinternational.37.250
[18] Fisher G L. The effect of nickel on the high-temperature oxidation characteristics of copper-bearing steels [J]. J. Iron Steel Inst., 1969, 207: 1010
[19] Shibata K, Seo S J, Kaga M, et al. Suppression of surface hot shortness due to Cu in recycled steels [J]. Mater. Trans., 2002, 43: 292
doi: 10.2320/matertrans.43.292
[20] Wang L, Zhang S X, Dong J H, et al. Surface crazing of Mn-Cu weathering steel [J]. Acta Metall. Sin., 2010, 46: 723
doi: 10.3724/SP.J.1037.2009.00501
(王雷, 张思勋, 董俊华等. Mn-Cu耐候钢的表面龟裂 [J]. 金属学报, 2010, 46: 723)
doi: 10.3724/SP.J.1037.2009.00501
[21] Dong J H, Chen X H, Han E-H, et al. Synergistic effect of copper and manganese on resistant to atmospheric corrosion for low-alloying steel [A]. 16th International Corrosion Congress [C]. Beijing, 2005: 1
[22] Kajitani T, Wakoh M, Tokumitsu N, et al. Influence of heating temperature and strain on surface crack in carbon steel induced by residual copper [J]. Tetsu-to-Hagané, 1995, 81: 185
doi: 10.2355/tetsutohagane1955.81.3_185
[23] Seo S J, Asakura K, Shibata K. Evaluation of susceptibility to surface hot shortness in Cu-containing steels by tensile test [J]. ISIJ Int., 1997, 37: 232
doi: 10.2355/isijinternational.37.232
[24] Chen X H, Dong J H, Han E-H, et al. Effect of Cu on microstructures of manganese steel by EDXA and SEM [J]. J. Mater. Sci. Technol., 2007, 23(3): 307
doi: 10.1179/174328407X158640
[25] Khalid F A, Edmonds D V. On the properties and structure of micro-alloyed and copper-bearing hot-rolled steels [J]. J. Mater. Proc. Technol., 1997, 72: 434
doi: 10.1016/S0924-0136(97)00207-0
[1] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[2] Han FENG,Zhigang SONG,Xiaohan WU,Hui LI,Wenjie ZHENG,Yuliang ZHU. Relationship Between Selective Corrosion Behavior and Duplex Structure of 022Cr25Ni7Mo4N Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[3] Zhaodeng LI,Zhendong CUI,Xiangyu HOU,Lili GAO,Weizhen WANG,Jianhua YIN. Corrosion Property of Nuclear Grade 316LN Stainless Steel Weld Joint in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[4] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[5] Yang LI, Chengyuan LI, Xu CHEN, Jiaxing YANG, Xintong WANG, Nanxi MING, Zhenze HAN. Gray Relationship Analysis on Corrosion Behavior of Super 13Cr Stainless Steel in Environments of Marine Oil and Gas Field[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[6] Yukun WANG, Jing LIU, Qian HU, Feng HUANG. Effect of S2- on Corrosion Behavior of A710 Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(3): 233-240.
[7] ZHAO Yang, LIANG Ping, SHI Yanhua, ZHANG Yunxia. Influence of Environmental Factors on Property of Passive Film Formed on X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2015, 35(2): 113-121.
[8] SHI Xianbo, WANG Wei, YAN Wei, SHAN Yiyin, YANG Ke. Effect of Martensite/Austenite (M/A) Constituent on H2S Resistance of High Strength Pipeline Steels[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
[9] ZHAO Yang,LIANG Ping,SHI Yanhua,WANG Bingxin,LIU Feng,WU Zhanwen. Comparison of Passive Films on X100 and X80 Pipeline Steels in NaHCO3 Solution[J]. 中国腐蚀与防护学报, 2013, 33(6): 455-462.
[10] . Comparison of Passive Films for X100 and X80 Pipeline Steels in NaHCO3 Solution[J]. 中国腐蚀与防护学报, 0, 0(0): 0-0.
[11] ZENG Hongtao,XIANG Song,LIU Songlin,HE Yonggang. Corrosion Behaviors of 904L Austenite Stainless Steel in Concentrated Sulfuric Acid Containing Hydrofluoric Acid[J]. 中国腐蚀与防护学报, 2013, 33(3): 182-187.
[12] . Corrosion behaviors of 904L austenite stainless steel in concentrated sulfuric acid bearing hydrofluoric acid[J]. 中国腐蚀与防护学报, 0, 0(0): 0-0.
[13] GUO Yong'an, LI Bosong, LAI Wanhui, GUO Jianting, ZHOU Lanzhang. OXIDATION BEHAVIOR OF Ni-BASED SUPERALLOY K444 AT 900℃ IN AIR DURING LONG TERM[J]. 中国腐蚀与防护学报, 2012, 32(4): 285-290.
[14] JIANG Ke, CHEN Xuedong, YANG Tiecheng, ZHANG wei, LIANG Chunlei. HIGH TEMPERATURE NAPHTHENIC ACID CORROSION RESEARCH OF TYPICAL AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2012, 32(1): 59-63.
[15] ZHANG Shenghan, LIAN Jia, TAN Yu. SEMICONDUCTOR CHARACTER OF PASSIVE FILMS FORMED ON 304L STAINLESS STEEL IN ZINC CONTAINED HIGH TEMPERATURE WATER[J]. 中国腐蚀与防护学报, 2011, 31(6): 483-487.
No Suggested Reading articles found!