Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (6): 553-559    DOI: 10.11902/1005.4537.2019.250
Current Issue | Archive | Adv Search |
Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution
YU Haoran, ZHANG Wenli, CUI Zhongyu()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Download:  HTML  PDF(9785KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of chemical composition and microstructure on the corrosion behavior of Mg-alloys AZ31, AZ91, AM60 and ZK61 in 0.1 mol/L sodium chloride solution (NaCl) containing different concentration of ammonium nitrate (NH4NO3) were investigated. The corrosion processes of the four Mg-alloys were studied by immersion tests, polarization curve measurement, SEM and CLSM. Results show that the addition of NH4NO3 accelerates the corrosion of the four alloys, whilst autocatalytic pitting corrosion occurs due to the synergistic effects of Cl-, NH4+, and NO3- in solutions within a specific concentration range. The corrosion resistance of different Mg-alloys is closely related to the chemical composition and microstructure of the alloys.

Key words:  Mg-alloy      ammonium      autocatalytic pitting corrosion      chemical composition      microstructure     
Received:  06 December 2019     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51601182)
Corresponding Authors:  CUI Zhongyu     E-mail:  cuizhongyu@ouc.edu.cn

Cite this article: 

YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 553-559.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.250     OR     https://www.jcscp.org/EN/Y2020/V40/I6/553

Fig.1  Microstructures of AZ31 (a), AZ91 (b), AM60 (c) and ZK61 (d) alloys
Fig.2  Mass losses (a) and corrosion rates (b) of AZ31, AZ91, AM60, and ZK61 Mg-alloys during immersion for 12 h in 0.1 mol/L NaCl solution and 0.1 mol/L NaCl+0.01 mol/L NH4NO3 solution
Alloy0.1 mol/L NaCl0.1 mol/L NaCl+0.01 mol/L NH4NO3Rate of corrosion acceleration
AZ316.7438.435.71
AZ911.5010.416.93
AM604.497.991.78
ZK6118.81314.7716.74
Table 1  Effects of NH4NO3 on corrosion acceleration rates of four Mg-alloys
Fig.3  Polarization curves of AZ31, AZ91, AM60 and ZK61 Mg-alloys in 0.1 mol/L NaCl (a) and 0.1 mol/L NaCl+0.01 mol/L NH4NO3 (b) solutions
Alloybc / mV·dec-1Icorr / A·cm-2Pi / mm·a-1
AZ91-0.1166.99×10-60.16
AM60-0.1107.50×10-60.17
AZ31-0.1181.35×10-50.31
ZK61-0.2118.23×10-51.88
Table 2  Free corrosion current densities (Icorr) and corrosion rates (Pi) of four Mg-alloys in 0.1 mol/L NaCl solution
Fig.4  Corrosion morphologies of AZ31 (a1~a4), AZ91 (b1~b4) and ZK61 (c1~c4) alloys after immersion for 12 h in 0.1 mol/L NaCl solutions with different concentrations of NH4NO3: (a1) 0, (a2) 0.001 mol/L, (a3) 0.01 mol/L, (a4) 0.1 mol/L, (b1) 0, (b2) 0.007 mol/L, (b3) 0.02 mol/L, (b4) 0.04 mol/L, (c1) 0, (c2) 0.0002 mol/L, (c3) 0.05 mol/L, (c4) 0.09 mol/L
Fig.5  Pit parameters of AZ31, AZ91, AM60, ZK61 alloys during immersion in 0.1 mol/L NaCl and 0.1 mol/L NaCl+0.01 mol/L NH4NO3 solutions: (a) pit number density; (b) maximum pit depth; (c) mean pit depth; (d) pit diameter; (e)individual pit volume; (f) pit shape
[1] Wang X J, Xu D K, Wu R Z, et al. What is going on in magnesium alloys? [J]. J. Mater. Sci. Technol., 2018, 34: 245
doi: 10.1016/j.jmst.2017.07.019
[2] Song G L, Bowles A L, StJohn D H. Corrosion resistance of aged die cast magnesium alloy AZ91D [J]. Mater. Sci. Eng., 2004, A366: 74
[3] Li J X, Zhang Y, Li J Y, et al. Effect of trace HA on microstructure, mechanical properties and corrosion behavior of Mg-2Zn-0.5Sr alloy [J]. J. Mater. Sci. Technol., 2018, 34: 299
[4] Atrens A, Johnston S, Shi Z M, et al. Understanding Mg corrosion in the body for biodegradable medical implants [J]. Scr. Mater., 2018, 154: 92
doi: 10.1016/j.scriptamat.2018.05.021
[5] Wu Z N, Li P J, Liu S X, et al. Present state of research on corrosion of magnesium alloys [J]. Foundry, 2001, 50: 583
(吴振宁, 李培杰, 刘树勋等. 镁合金腐蚀问题研究现状 [J]. 铸造, 2001, 50: 583)
[6] Cui Z Y, Ge F, Lin Y, et al. Corrosion behavior of AZ31 magnesium alloy in the chloride solution containing ammonium nitrate [J]. Electrochim. Acta, 2018, 278: 421
doi: 10.1016/j.electacta.2018.05.059
[7] Cheng Y L, Qin T W, Wang H M, et al. Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys [J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 517
doi: 10.1016/S1003-6326(08)60305-2
[8] Zhao J M, Li T, Zhao X H. Corrosion behavior of four cast magnesium alloys in simulated body fluid [J]. Corros. Sci. Prot. Technol., 2015, 27: 444
(赵景茂, 李彤, 赵旭辉. 4种铸造镁合金在SBF溶液中的腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2015, 27: 444)
doi: 10.11903/1002.6495.2014.348
[9] Li L J, Yu S H, Lei J L, et al. Corrosion electrochemical behavior of AZ31 and AZ61 magnesium alloys in simulated sea water [J]. Electrochemistry, 2008, 14: 95
(李凌杰, 于生海, 雷惊雷等. AZ31和AZ61镁合金在模拟海水中的腐蚀电化学行为 [J]. 电化学, 2008, 14: 95)
[10] Song G L, Atrens A. Corrosion mechanisms of magnesium alloys [J]. Adv. Eng. Mater., 1999, 1: 11
doi: 10.1002/(ISSN)1527-2648
[11] Xia L T, Gao S, Luo X P, et al. Corrosion factor analysis of magnesium alloy at different circumstance [J]. Foundry, 2005, 54: 794
(夏兰廷, 高珊, 罗小萍等. 影响镁合金腐蚀性能的因素分析 [J]. 铸造, 2005, 54: 794)
[12] Cui Z Y, Li X G, Xiao K, et al. Corrosion behavior of field-exposed zinc in a tropical marine atmosphere [J]. Corrosion, 2014, 70: 731
doi: 10.5006/1177
[13] Li T, Zhang H, He Y, et al. Comparison of corrosion behavior of Mg‐1.5Zn‐0.6Zr and AZ91D alloys in a NaCl solution [J]. Mater. Corros., 2015, 66: 7
[14] Song G L, StJohn D. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ [J]. J. Light Met., 2002, 2: 1
doi: 10.1016/S1471-5317(02)00008-1
[15] Aouina N, Balbaud-Célérier F, Huet F, et al. Single pit initiation on 316L austenitic stainless steel using scanning electrochemical microscopy [J]. Electrochim. Acta, 2011, 56: 8589
doi: 10.1016/j.electacta.2011.07.044
[16] Pardo A, Merino M C, Coy A E, et al. Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media [J]. Electrochim. Acta, 2008, 53: 7890
doi: 10.1016/j.electacta.2008.06.001
[17] Yu G, Liu Y L, Li Y, et al. Corrosion and protection of magnesium alloys [J]. Chin. J. Nonferrous Met., 2002, 12: 1087
(余刚, 刘跃龙, 李瑛等. Mg合金的腐蚀与防护 [J]. 中国有色金属学报, 2002, 12: 1087)
[18] Huan Z G, Leeflang M A, Zhou J, et al. In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys [J]. J. Mater. Sci: Mater. Med., 2010, 21: 2623
doi: 10.1007/s10856-010-4111-8
[19] Liu M, Uggowitzer P J, Nagasekhar A V, et al. Calculated phase diagrams and the corrosion of die-cast Mg-Al alloys [J]. Corros. Sci., 2009, 51: 602
doi: 10.1016/j.corsci.2008.12.015
[20] Zeng G, Xian J W, Gourlay C M. Nucleation and growth crystallography of Al8Mn5 on B2-Al(Mn,Fe) in AZ91 magnesium alloys [J]. Acta Mater., 2018, 153: 364
doi: 10.1016/j.actamat.2018.04.032
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[4] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[5] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[6] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[7] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[8] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[9] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[10] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[11] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[12] Longbiao TIAN,Zhiping ZHU,Chunlei ZHANG,Qiang YU,Lei YANG. Urea Induced Corrosion of 15CrMo Steel for Water Cooled Wall Tubes in Coal-fired Power Plants[J]. 中国腐蚀与防护学报, 2019, 39(2): 114-122.
[13] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[14] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[15] Zhihu WANG, Jumei ZHANG, Lijing BAI, Guojun ZHANG. Microstructure and Property of Composite Coatings on AZ91 Mg-alloy Prepared by Micro-arc Oxidation and Electroless Cu-layer[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
No Suggested Reading articles found!