Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (5): 448-454    DOI: 10.11902/1005.4537.2019.281
Current Issue | Archive | Adv Search |
Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments
LI Lin1,2(), CHEN Yiqing1,2, GAO Peng1,2, AI Fangfang1,2, ZHONG Bin1,2, SAN Hongyu1,2, YANG Ying2
1 State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan 114009, China
2 Iron & Steel Research Institute of ANGANG Group, Anshan 114009, China
Download:  HTML  PDF(6916KB) 
Export:  BibTeX | EndNote (RIS)      

The corrosion behavior of bridge steels Q345qENH and Q420qENH in deicing salt was studied by means of wet-dry cyclic corrosion test, immersion corrosion test and rust scale characterization, while taking Q345qE steel as comparison. The results indicate that the corrosion resistance of the Q345qENH and Q420qENH weathering bridge steels was better than that of the Q345qE steel. The dry-wet cyclic corrosion test results reveal that the Q345qENH, Q420qENH and Q345qE steels show corrosion rates of 26.88, 27.5, and 33.75 times higher than those measured in immersion corrosion test, respectively. During dry-wet cyclic corrosion test, the structure and composition of the formed rust scales changed and the amount of α-FeOOH phase increased gradually with time, which may be an important reason leading to the decrease of corrosion rate at the end of dry-wet cyclic test.

Key words:  bridge steel      deicing salt      dry-wet cyclic      immersion      corrosion behavior     
Received:  31 December 2019     
ZTFLH:  TG172  
Fund: National Key R&D Program of China(2017YFB0304800)
Corresponding Authors:  LI Lin     E-mail:

Cite this article: 

LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 448-454.

URL:     OR

Q345qENH0.0550.261.390.0120.00350.034Total 1.001Bal.
Q420qENH0.0550.351.550.0200.0030.025Total 1.187Bal.
Q345qE0.1500.301.460.0130.00360.041Total 0.182Bal.
Table 1  Chemical compositions of test samples
Fig.1  Appearance of Q345qENH (a1, a2), Q420qENH (b1, b2) and Q345qE (c1, c2) samples after dry-wet cyclic corrosion test with deicing salt for 2 h (a1~c1) and 8 d (a2~c2)
Fig.2  SEM images of Q345qENH (a), Q420qENH (b) and Q345qE (c) samples after dry-wet cyclic corrosion test for 32 d
Fig.3  Thickness loss of samples after dry-wet cyclic corrosion test
Fig.4  Fitted line plot of thickness loss of Q345qENH (a), Q420qENH (b) and Q345qE (c) samples after dry-wet cyclic corrosion test
SampleAnPower function fittingCorrelation coefficient / R2
Table 2  Regression equation of dry-wet cyclic corrosion test
Fig.5  Appearance of Q345qENH (a), Q420qENH (b) and Q345qE (c) samples after deicing salt immers-ion test for 8 d
Fig.6  Thickness loss of samples after immersion corrosion test
Fig.7  Fitted line plot of thickness loss of Q345qENH (a),Q420qENH (b) and Q345qE (c) samples after imm-ersion corrosion test
SampleAnPower function fittingCorrelation coefficient / R2
Table 3  Regression equation of immersion corrosion test
Fig.8  XRD pattern of corrosion product of Q345qENH (a), Q420qENH (b) and Q345qE (c) steels after dry-wet cyclic corrosion test
Q345qENH-2 d6214231------
Q345qENH-32 d1635618205
Q420qENH-2 d7184530------
Q420qENH-32 d10447---318
Q345qE-2 d7184431------
Q345qE-32 d7.918.89.923.833.75.9
Table 4  Phase composition of corrosion product after dry-wet cyclic corrosion test
[1] Zhang Z M, Du S J, Zhao S T. A research on influence and countermeasure of the snow-melting agent to traffic facilities and environment [J]. Shanxi Arch., 2010, 36(23): 345
(张志敏, 杜素军, 赵世涛. 融雪剂对交通设施和环境的影响及对策研究 [J]. 山西建筑, 2010, 36(23): 345)
[2] Hong N F. Snow thaw agent and its corrosion harmfulness on infrastructure [J]. Arch. Technol., 2004, 35: 256
(洪乃丰. 融雪剂及其对基础设施的腐蚀危害 [J]. 建筑技术, 2004, 35: 256)
[3] Miyamoto A. Kawamura K. Nakamura H. Bridge management system and maintenance optimization for existing bridges [J]. Com. Civil Infrast. Eng., 2000, 15: 45
[4] Yang Z B. On deicing salt damage and the impact on the bridge [J]. China Build. Mater. Sci. Technol., 2014, 23(3): 122
(杨哲斌. 融雪剂对桥梁的破坏和影响 [J]. 中国建材科技, 2014, 23(3): 122)
[5] Chen Z W, Zhang L T, He E L, et al. Corrosion detection of road deicing salt on carbon steel and corrosion reducing treatments [J]. Highway, 2011, (12): 177
(陈宗伟, 张立塔, 赫恩龙等. 公路融雪剂碳钢腐蚀性检测方法及缓蚀工艺研究 [J]. 公路, 2011, (12): 177)
[6] Shi J, Yang F G, Zhou N C. Damage reasons and treatment measures of expressway bridge deck pavement in chilly area [J]. Liaoning Comm. Sci. Technol., 2004, (2): 20
(石坚, 杨芳国, 周乃承. 寒冷地区高速公路桥面铺装过早破损原因分析和处理方法 [J]. 辽宁交通科技, 2004, (2): 20)
[7] Liu S W, Liu P C. Mechanism analysis and prevention measures of the corrosion of bridge components by chlorine salt snow melt agent [J]. Highways Trans. Inner Mong., 2012, 3(6): 16
(刘少伟, 刘鹏冲. 氯盐融雪剂腐蚀桥梁构件的机理分析及防治对策 [J]. 内蒙古公路与运输, 2012, 3(6): 16)
[8] Guo T M, Zhang Y W, Qin J S, et al. Corrosion behavior of Q345q bridge steel in three simulated atmospheres [J]. J. Chin. Sci. Corros. Prot., 2019, 39: 319
(郭铁明, 张延文, 秦均山等. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 319)
[9] Zhao G N, Wu D D. A study on the hazard and control of deicing salt [J]. Environ. Sci. Manag., 2010, 35(4): 56
(赵光楠, 吴德东. 融雪剂的危害与防治研究 [J]. 环境科学与管理, 2010, 35(4): 56)
[10] Yao Y, Yao L. Research progress in impact of chlorine snowmelt agent (salt) on transport infrastructure [J]. Contemp. Chem. Ind., 2015, 44: 1359
(姚艺, 姚乐. 含氯融雪剂 (盐) 对交通基础设施的影响研究进展 [J]. 当代化工, 2015, 44: 1359)
[11] Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
[12] Liang J M, Tang D, Wu H B, et al. Cyclic corrosion behavior of E36 low-alloy steel in a simulated cargo oil tank upper deck environment corresponding to IMO standard [J]. Chin. J. Mater. Res., 2014, 28: 433
(梁金明, 唐荻, 武会宾等. 基于IMO标准的E36级低合金船板钢货油舱上甲板环境全周期腐蚀行为与机理 [J]. 材料研究学报, 2014, 28: 433)
[13] Pan C, Han W, Wang Z Y, et al. Evolution of initial atmospheric corrosion of carbon steel in an industrial atmosphere [J]. J. Mater. Eng. Perform., 2016, 25: 5382
[14] Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review [J]. Corros. Sci., 2013, 77: 6
[15] Ke W, Dong J H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metall. Sin., 2010, 46: 1365
(柯伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究 [J]. 金属学报, 2010, 46: 1365)
[16] Wang C, Cao G W, Pan C, et al. Atmospheric corrosion of carbon steel and weathering steel in three environments [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 39
(汪川, 曹公旺, 潘辰等. 碳钢, 耐候钢在3种典型大气环境中的腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2016, 36: 39)
[17] Dillmann P, Mazaudier F, Hœrlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
[18] Yamashita M, Nagano H, Misawa T, et al. Structure of protective rust layers formed on weathering steels by long-term exposure in the industrial atmospheres of Japan and North America [J]. ISIJ Int., 1998, 38: 285
[1] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[2] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[3] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[5] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[6] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[7] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[8] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[9] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[10] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[11] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[12] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[13] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[14] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[15] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
No Suggested Reading articles found!