|
|
HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究 |
史先飞, 陈晓华, 满成( ) |
中国海洋大学材料科学与工程学院 青岛 266400 |
|
Natural Passivation Behavior and Corrosion Resistance of HRB400 Steel in Simulated Concrete Pore Solution |
SHI Xianfei, CHEN Xiaohua, MAN Cheng( ) |
School of Materials Science and Engineering, Ocean University of China, Qingdao 266400, China |
引用本文:
史先飞, 陈晓华, 满成. HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1213-1222.
Xianfei SHI,
Xiaohua CHEN,
Cheng MAN.
Natural Passivation Behavior and Corrosion Resistance of HRB400 Steel in Simulated Concrete Pore Solution[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1213-1222.
1 |
Guo A X, Li H T, Ba X, et al. Experimental investigation on the cyclic performance of reinforced concrete piers with chloride-induced corrosion in marine environment [J]. Eng. Struct., 2015, 105: 1
|
2 |
Zhang J C, Jiang J Y, Li Y, et al. Passive films formed on seawater corrosion resistant rebar 00Cr10MoV in simulated concrete pore solutions [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 441
|
2 |
张建春, 蒋金洋, 李 阳 等. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究 [J]. 中国腐蚀与防护学报, 2016, 36: 441
doi: 10.11902/1005.4537.2015.182
|
3 |
Marcos-Meson V, Michel A, Solgaard A, et al. Corrosion resistance of steel fibre reinforced concrete-A literature review [J]. Cem. Concr. Res., 2018, 103: 1
|
4 |
Angst U, Elsener B, Larsen C K, et al. Critical chloride content in reinforced concrete—A review [J]. Cem. Concr. Res., 2009, 39: 1122
|
5 |
Xu L J, Wu P G, Zhu X J, et al. Structural characteristics and chloride intrusion mechanism of passive film [J]. Corros. Sci., 2022, 207: 110563
|
6 |
Gai X P, Lei L, Cui Z Y. Pitting corrosion behavior of 304 stainless steel in simulated concrete pore solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 646
|
6 |
盖喜鹏, 雷 黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 646
doi: 10.11902/1005.4537.2020.238
|
7 |
Hurley M F, Scully J R. Threshold chloride concentrations of selected corrosion-resistant rebar materials compared to carbon steel [J]. Corrosion, 2006, 62: 892
|
8 |
Liu M, Cheng X Q, Li X G, et al. Corrosion behavior and durability of low-alloy steel rebars in marine environment [J]. J. Mater. Eng. Perform., 2016, 25: 4967
|
9 |
Sánchez M, Gregori J, Alonso C, et al. Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores [J]. Electrochim. Acta, 2007, 52: 7634
|
10 |
Zhang B, Wang J H, Wu B G, et al. Unmasking chloride attack on the passive film of metals [J]. Nat. Commun., 2018, 9: 2559
doi: 10.1038/s41467-018-04942-x
pmid: 29967353
|
11 |
Massoud T, Maurice V, Klein L H, et al. Nanostructure and local properties of oxide layers grown on stainless steel in simulated pressurized water reactor environment [J]. Corros. Sci., 2014, 84: 198
|
12 |
Long H Y, Chen L J, Dong B J, et al. The electronic properties and surface chemistry of passive film on reinforcement: Effect of composition of simulated concrete pore solution [J]. Constr. Build. Mater., 2022, 360: 129567
|
13 |
Chen H D, Zou D N, Chen X R, et al. Natural passivation and pitting behavior of 2304 stainless steel in carbonized porous fluid [J]. J. Chin. Soc. Corros. Prot., 2023, 58: 128
|
13 |
陈浩东, 邹德宁, 陈兴润 等. 碳酸化孔隙液中2304不锈钢的自然钝化及点蚀行为 [J]. 中国腐蚀与防护学报, 2023, 58: 128
|
14 |
Wang M L, Sun Y P, Chen L, et al. Behavior of corrosion-resistant Cr-containing steel bars in simulated high-alkaline concrete pore solution [J/OL]. Acta Metall. Sin., 2023: 1-13 [2024-02-18].
|
14 |
王慕亮, 孙玉朋, 陈 磊 等. 含Cr耐蚀钢筋在模拟高碱性混凝土孔隙液中的钝化行为 [J/OL]. 金属学报, 2023: 1-13 [2024-02-18].
|
15 |
Yuan X W, Wang X, Cao Y, et al. Natural passivation behavior and its influence on chloride-induced corrosion resistance of stainless steel in simulated concrete pore solution [J]. J. Mater. Res. Technol., 2020, 9: 12378
|
16 |
Liu M, Cheng X Q, Li X G, et al. Corrosion behavior of Cr modified HRB400 steel rebar in simulated concrete pore solution [J]. Constr. Build. Mater., 2015, 93: 884
|
17 |
Cai Y M, Zheng H B, Hu X, et al. Comparative studies on passivation and corrosion behaviors of two types of steel bars in simulated concrete pore solution [J]. Constr. Build. Mater., 2021, 266: 120971
|
18 |
Shang B H, Ma Y T, Meng M J, et al. Characterisation of passive film on HRB400 steel rebar in curing stage of concrete [J]. Chin. J. Mater. Res., 2019, 33: 659
doi: 10.11901/1005.3093.2019.068
|
18 |
商百慧, 马元泰, 孟美江 等. 混凝土养护期间HRB400钢筋钝化行为研究 [J]. 材料研究学报, 2019, 33: 659
doi: 10.11901/1005.3093.2019.068
|
19 |
Duan Z W, Man C, Dong C F, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: Pitting mechanism induced by gas pores [J]. Corros. Sci., 2020, 167: 108520
|
20 |
Shi J J, Sun W, Jiang J Y, et al. Influence of chloride concentration and pre-passivation on the pitting corrosion resistance of low-alloy reinforcing steel in simulated concrete pore solution [J]. Constr. Build. Mater., 2016, 111: 805
|
21 |
Freire L, Carmezim M J, Ferreira M G S, et al. The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides [J]. Electrochim. Acta, 2011, 56: 5280
|
22 |
Zheng H B, Dai J G, Li W H, et al. Influence of chloride ion on depassivation of passive film on galvanized steel bars in concrete pore solution [J]. Constr. Build. Mater., 2018, 166: 572
|
23 |
Li D G, Feng Y R, Bai Z Q, et al. Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution [J]. Electrochim. Acta, 2007, 52: 7877
|
24 |
Williamson J, Burkan Isgor O. The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar [J]. Corros. Sci., 2016, 106: 82
|
25 |
Shi J J, Li M, Wu M, et al. Role of red mud in natural passivation and chloride-induced depassivation of reinforcing steels in alkaline concrete pore solutions [J]. Corros. Sci., 2021, 190: 109669
|
26 |
Ghods P, Burkan Isgor O, Bensebaa F, et al. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution [J] Corros. Sci., 2012, 58: 159
|
27 |
Wang Z Y, Cheng Y P, Wang L, et al. Characterization of pore structure and the gas diffusion properties of tectonic and intact coal: Implications for lost gas calculation [J]. Process Saf. Environ. Prot., 2020, 135: 12
|
28 |
Moreno M, Morris W, Alvarez M G, et al. Corrosion of reinforcing steel in simulated concrete pore solutions: Effect of carbonation and chloride content [J]. Corros. Sci., 2004, 46: 2681
|
29 |
Liu R, Jiang L H, Xu J X, et al. Influence of carbonation on chloride-induced reinforcement corrosion in simulated concrete pore solutions [J]. Constr. Build. Mater., 2014, 56: 16
|
30 |
Coelho L B, Mouanga M, Druart M E, et al. A SVET study of the inhibitive effects of benzotriazole and cerium chloride solely and combined on an aluminium/copper galvanic coupling model [J]. Corros. Sci, 2016, 110: 143
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|