Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1213-1222     CSTR: 32134.14.1005.4537.2023.349      DOI: 10.11902/1005.4537.2023.349
  研究报告 本期目录 | 过刊浏览 |
HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究
史先飞, 陈晓华, 满成()
中国海洋大学材料科学与工程学院 青岛 266400
Natural Passivation Behavior and Corrosion Resistance of HRB400 Steel in Simulated Concrete Pore Solution
SHI Xianfei, CHEN Xiaohua, MAN Cheng()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266400, China
引用本文:

史先飞, 陈晓华, 满成. HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1213-1222.
Xianfei SHI, Xiaohua CHEN, Cheng MAN. Natural Passivation Behavior and Corrosion Resistance of HRB400 Steel in Simulated Concrete Pore Solution[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1213-1222.

全文: PDF(12093 KB)   HTML
摘要: 

首先通过开路电位测试、电化学阻抗谱和Mott-Schottky曲线研究了HRB400钢在模拟混凝土孔隙液中的自然钝化行为,并结合XPS和AFM测试对钝化膜的成分与结构进行了分析,随后采用动电位极化曲线和SVET技术研究了自然钝化所形成的钝化膜的耐Cl-侵蚀性能,并结合SEM测试对腐蚀形貌进行了微观分析。结果表明,HRB400钢在模拟混凝土孔隙液中形成稳定的钝化膜至少需要72 h,在该过程中,钝化膜的结构和成分随之发生改变。稳定的钝化膜具有很好的耐Cl-侵蚀能力,临界Cl-浓度范围为0.1~0.15 mol/L,这与微观组织的分析结果基本保持一致。

关键词 HRB400钢模拟混凝土孔隙液自然钝化钝化膜临界Cl-浓度    
Abstract

The natural passivation behavior of HRB400 steel in simulated concrete pore solution, i.e. a saturated Ca(OH)2 solution with pH 12.5 was investigated via measurements of open circuit potential, electrochemical impedance spectra, and Mott-Schottky curves. The composition and structure of the passivation film were characterized by X-ray photoelectron spectroscope and atomic force microscope. Subsequently, the resistance to Cl- attack of the passivation film formed by the natural passivation in saturated Ca(OH)2 solution with varying pH values was further studied with dynamic potential polarization curve measurement, SVET technique, and SEM in terms of corrosion morphology and corrosion products. The results indicate that HRB400 steel requires at least 72 h to form a stable passivation film in simulated concrete pore solution, and the structure and composition of the passivation film are subsequently changed during the process. The stable passivation film exhibits excellent resistance to chloride ion attack with a critical chloride ion concentration range of 0.1 to 0.15 mol/L, which is well consistent with the results of SEM characterization.

Key wordsHRB400 steel    simulated concrete pore solution    natural passivation    passivation film    critical chloride ion concentration
收稿日期: 2023-10-17      32134.14.1005.4537.2023.349
ZTFLH:  TG174  
基金资助:国家重点研发计划(2021YFE0114000)
通讯作者: 满成,E-mail: mancheng@ouc.edu.cn,研究方向为金属材料腐蚀与防护
Corresponding author: MAN Cheng, E-mail: mancheng@ouc.edu.cn
作者简介: 史先飞,男,1998年生,硕士生
图1  HRB400钢在SCPS中钝化不同时间的开路电位随时间变化图
图2  HRB400钢在SCPS中钝化不同时间的EIS图和拟合参数图像
图3  EIS拟合所采用的等效电路图

Time

h

Rs

Ω·cm2

CPEf

Ω·s n ·cm-2

nf

Rd

kΩ·cm2

Rf

kΩ·cm2

CPEdl

Ω·s n ·cm2

ndl

Rct

kΩ·cm2

150.113.512 × 10-50.895158.68-2.638 × 10-50.6049126.5
1243.833.465 × 10-50.905476.69-2.686 × 10-50.6752140.4
2451.673.307 × l10-50.8992111.2-2.788 × 10-50.6911335.3
7247.852.455 × 10-50.9364-536.5---
12049.772.474 × 10-50.9393-679.4---
16849.412.306 × 10-50.9462-1468---
表1  HRB400钢在SCPS中钝化不同时间的EIS拟合参数
图4  HRB400钢在SCPS中钝化不同时间的Mott-Schottky测试结果
图5  钝化膜的XPS测试结果
图6  不同时间形成的钝化膜表面形貌和高度的AFM图像
Time / hSurface roughness
Rq / nmRa / nm
12.131.25
124.843.73
245.694.73
726.124.97
1206.175.07
1687.195.42
表2  钝化膜的表面粗糙度
图7  HRB400钢在含有不同Cl-浓度的SCPS中的极化曲线
图8  经168 h钝化并在含不同浓度Cl-的SCPS中浸泡72 h的HRB400钢SVET测试结果,以及Ia和Ic随Cl-浓度变化关系
图9  HRB400钢在含有不同Cl-浓度的SCPS中浸泡168 h后的微观形貌图
1 Guo A X, Li H T, Ba X, et al. Experimental investigation on the cyclic performance of reinforced concrete piers with chloride-induced corrosion in marine environment [J]. Eng. Struct., 2015, 105: 1
2 Zhang J C, Jiang J Y, Li Y, et al. Passive films formed on seawater corrosion resistant rebar 00Cr10MoV in simulated concrete pore solutions [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 441
2 张建春, 蒋金洋, 李 阳 等. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究 [J]. 中国腐蚀与防护学报, 2016, 36: 441
doi: 10.11902/1005.4537.2015.182
3 Marcos-Meson V, Michel A, Solgaard A, et al. Corrosion resistance of steel fibre reinforced concrete-A literature review [J]. Cem. Concr. Res., 2018, 103: 1
4 Angst U, Elsener B, Larsen C K, et al. Critical chloride content in reinforced concrete—A review [J]. Cem. Concr. Res., 2009, 39: 1122
5 Xu L J, Wu P G, Zhu X J, et al. Structural characteristics and chloride intrusion mechanism of passive film [J]. Corros. Sci., 2022, 207: 110563
6 Gai X P, Lei L, Cui Z Y. Pitting corrosion behavior of 304 stainless steel in simulated concrete pore solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 646
6 盖喜鹏, 雷 黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 646
doi: 10.11902/1005.4537.2020.238
7 Hurley M F, Scully J R. Threshold chloride concentrations of selected corrosion-resistant rebar materials compared to carbon steel [J]. Corrosion, 2006, 62: 892
8 Liu M, Cheng X Q, Li X G, et al. Corrosion behavior and durability of low-alloy steel rebars in marine environment [J]. J. Mater. Eng. Perform., 2016, 25: 4967
9 Sánchez M, Gregori J, Alonso C, et al. Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores [J]. Electrochim. Acta, 2007, 52: 7634
10 Zhang B, Wang J H, Wu B G, et al. Unmasking chloride attack on the passive film of metals [J]. Nat. Commun., 2018, 9: 2559
doi: 10.1038/s41467-018-04942-x pmid: 29967353
11 Massoud T, Maurice V, Klein L H, et al. Nanostructure and local properties of oxide layers grown on stainless steel in simulated pressurized water reactor environment [J]. Corros. Sci., 2014, 84: 198
12 Long H Y, Chen L J, Dong B J, et al. The electronic properties and surface chemistry of passive film on reinforcement: Effect of composition of simulated concrete pore solution [J]. Constr. Build. Mater., 2022, 360: 129567
13 Chen H D, Zou D N, Chen X R, et al. Natural passivation and pitting behavior of 2304 stainless steel in carbonized porous fluid [J]. J. Chin. Soc. Corros. Prot., 2023, 58: 128
13 陈浩东, 邹德宁, 陈兴润 等. 碳酸化孔隙液中2304不锈钢的自然钝化及点蚀行为 [J]. 中国腐蚀与防护学报, 2023, 58: 128
14 Wang M L, Sun Y P, Chen L, et al. Behavior of corrosion-resistant Cr-containing steel bars in simulated high-alkaline concrete pore solution [J/OL]. Acta Metall. Sin., 2023: 1-13 [2024-02-18].
14 王慕亮, 孙玉朋, 陈 磊 等. 含Cr耐蚀钢筋在模拟高碱性混凝土孔隙液中的钝化行为 [J/OL]. 金属学报, 2023: 1-13 [2024-02-18].
15 Yuan X W, Wang X, Cao Y, et al. Natural passivation behavior and its influence on chloride-induced corrosion resistance of stainless steel in simulated concrete pore solution [J]. J. Mater. Res. Technol., 2020, 9: 12378
16 Liu M, Cheng X Q, Li X G, et al. Corrosion behavior of Cr modified HRB400 steel rebar in simulated concrete pore solution [J]. Constr. Build. Mater., 2015, 93: 884
17 Cai Y M, Zheng H B, Hu X, et al. Comparative studies on passivation and corrosion behaviors of two types of steel bars in simulated concrete pore solution [J]. Constr. Build. Mater., 2021, 266: 120971
18 Shang B H, Ma Y T, Meng M J, et al. Characterisation of passive film on HRB400 steel rebar in curing stage of concrete [J]. Chin. J. Mater. Res., 2019, 33: 659
doi: 10.11901/1005.3093.2019.068
18 商百慧, 马元泰, 孟美江 等. 混凝土养护期间HRB400钢筋钝化行为研究 [J]. 材料研究学报, 2019, 33: 659
doi: 10.11901/1005.3093.2019.068
19 Duan Z W, Man C, Dong C F, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: Pitting mechanism induced by gas pores [J]. Corros. Sci., 2020, 167: 108520
20 Shi J J, Sun W, Jiang J Y, et al. Influence of chloride concentration and pre-passivation on the pitting corrosion resistance of low-alloy reinforcing steel in simulated concrete pore solution [J]. Constr. Build. Mater., 2016, 111: 805
21 Freire L, Carmezim M J, Ferreira M G S, et al. The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides [J]. Electrochim. Acta, 2011, 56: 5280
22 Zheng H B, Dai J G, Li W H, et al. Influence of chloride ion on depassivation of passive film on galvanized steel bars in concrete pore solution [J]. Constr. Build. Mater., 2018, 166: 572
23 Li D G, Feng Y R, Bai Z Q, et al. Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution [J]. Electrochim. Acta, 2007, 52: 7877
24 Williamson J, Burkan Isgor O. The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar [J]. Corros. Sci., 2016, 106: 82
25 Shi J J, Li M, Wu M, et al. Role of red mud in natural passivation and chloride-induced depassivation of reinforcing steels in alkaline concrete pore solutions [J]. Corros. Sci., 2021, 190: 109669
26 Ghods P, Burkan Isgor O, Bensebaa F, et al. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution [J] Corros. Sci., 2012, 58: 159
27 Wang Z Y, Cheng Y P, Wang L, et al. Characterization of pore structure and the gas diffusion properties of tectonic and intact coal: Implications for lost gas calculation [J]. Process Saf. Environ. Prot., 2020, 135: 12
28 Moreno M, Morris W, Alvarez M G, et al. Corrosion of reinforcing steel in simulated concrete pore solutions: Effect of carbonation and chloride content [J]. Corros. Sci., 2004, 46: 2681
29 Liu R, Jiang L H, Xu J X, et al. Influence of carbonation on chloride-induced reinforcement corrosion in simulated concrete pore solutions [J]. Constr. Build. Mater., 2014, 56: 16
30 Coelho L B, Mouanga M, Druart M E, et al. A SVET study of the inhibitive effects of benzotriazole and cerium chloride solely and combined on an aluminium/copper galvanic coupling model [J]. Corros. Sci, 2016, 110: 143
[1] 董征, 毛永祺, 孟洲, 陈向翔, 付传清, 陆晨涛. 应力作用下钢筋在模拟混凝土孔隙液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[2] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[3] 彭文山, 邢少华, 钱峣, 蔺存国, 侯健, 张大磊. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[4] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[5] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[6] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[7] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[8] 张媛, 张弦, 陈思雨, 李腾, 刘静, 吴开明. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[9] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[10] 赵宝珠, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[11] 唐荣茂, 刘光明, 师超, 张帮彦, 田继红, 甘鸿禹, 刘永强. 十二烷基苯磺酸钠在模拟混凝土孔隙液中对Q235钢缓蚀及吸附行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[12] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[13] 张龙华, 李长君, 潘磊, 韩思柯, 王昕, 崔中雨. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[14] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[15] 宫克, 吴明, 张胜. HCO3-对X90管线钢应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 727-731.