Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (5): 727-731    DOI: 10.11902/1005.4537.2020.166
  研究报告 本期目录 | 过刊浏览 |
HCO3-对X90管线钢应力腐蚀行为的影响
宫克1,2, 吴明1,2(), 张胜1
1.中国石油大学 (华东) 储运与建筑工程学院 青岛 266555
2.辽宁石油化工大学石油天然气工程学院 抚顺 113001
Effect of HCO3- on Stress Corrosion Cracking Behavior of X90 Pipeline Steel
GONG Ke1,2, WU Ming1,2(), ZHANG Sheng1
1.College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266555, China
2.College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
全文: PDF(8964 KB)   HTML
摘要: 

针对沈阳模拟土壤中HCO3-浓度变化对高强度X90管线钢的应力腐蚀行为进行了系统的研究。结果表明:X90钢的腐蚀速率随着HCO3-浓度的增加呈现出先增大后减小的趋势。HCO3-对X90管线钢腐蚀速率主要影响因素是HCO3-浓度变化影响钝化膜的保护性。当溶液HCO3-浓度为7%时,钝化膜的保护性最弱,X90管线钢的电化学腐蚀速率最快。此外,X90钢在沈阳土壤模拟溶液中的应力腐蚀敏感性呈现出先增大后减小的趋势,与电化学腐蚀速率一致,其应力腐蚀开裂机理为阳极溶解机理。

关键词 HCO3-X90管线钢钝化膜沈阳土壤    
Abstract

The effect of the variation of HCO3- concentration in an artificial soil solution, which aims to simulate the liquid of the soil nearby a pipeline situated at Shenyang area, on the stress corrosion cracking behavior of high-strength X90 pipeline steel was systematically studied. The results show that the corrosion rate of X90 steel increases first and then decreases with the increase of HCO3- concentration. The variation of HCO3- concentration on the corrosion rate of X90 pipeline steel may be ascribed to that the protective properties of the formed passive film may alter with the varying HCO3- concentration. When the HCO3- concentration of the solution is 7%, the protectiveness on of the passive film is the weakest, and the electrochemical corrosion rate of X90 pipeline steel is the fastest.

Key wordsHCO3-    X90 pipeline steel    passive film    shenyang soil
收稿日期: 2020-09-21     
ZTFLH:  TG172  
通讯作者: 吴明     E-mail: wuming_0413@sina.com
Corresponding author: WU Ming     E-mail: wuming_0413@sina.com
作者简介: 宫克,男,1992年生,博士生

引用本文:

宫克, 吴明, 张胜. HCO3-对X90管线钢应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 727-731.
Ke GONG, Ming WU, Sheng ZHANG. Effect of HCO3- on Stress Corrosion Cracking Behavior of X90 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 727-731.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.166      或      https://www.jcscp.org/CN/Y2021/V41/I5/727

图1  X90管线钢在不同浓度HCO3-下的极化曲线
图2  X90管线钢HCO3-浓度与腐蚀电位Ecoor的关系曲线
图3  X90管线钢在不同浓度HCO3-的沈阳土壤模拟溶液中的电化学阻抗图
图4  X90管线钢在不同HCO3-浓度的沈阳土壤模拟溶液中电化学阻抗图谱等效电路图
ѡ (HCO3-) / %Rs / Ω·cm2Rct / Ω·cm2W / S·s5·cm-2
13.3286022.17×10-4
33.7672112.58×10-4
56.4144724.12×10-4
表1  浓度为1%、3%和5%HCO3-的沈阳土壤模拟溶液中X90管线钢的电化学阻抗曲线拟合参数
ѡ (HCO3-) / %Rs / Ω·cm2W / S·s5·cm-2Rct / Ω․cm2Rf / Ω·cm2
75.361.07×10-344727.99
97.231.18×10-347236.26
表2  浓度为7%、9%HCO3-的沈阳土壤模拟溶液中X90管线钢的电化学阻抗曲线拟合参数
图5  X90管线钢在不同浓度HCO3-的沈阳土壤模拟溶液中SSRT曲线
图6  X90管线钢在不同浓度HCO3-的沈阳土壤模拟溶液中SSRT断口形貌
1 Anderson C M, Mayes M, LaBelle R. Update of occurrence rates for offshore oil spills [R]. OCS Report BOEM 2012-069, 2012
2 Xu L N, Xiao H, Shang W J, et al. Passivation of X65 (UNS K03014) carbon steel in NaHCO3 solution in a CO2 environment [J]. Corros. Sci., 2016, 109: 246
3 Xin Y C, Hu T, Chu P K. Degradation behaviour of pure magnesium in simulated body fluids with different concentrations of HCO3- [J]. Corros. Sci., 2011, 53: 1522
4 Machuca L L, Lepkova K, Petroski A. Corrosion of carbon steel in the presence of oilfield deposit and thiosulphate-reducing bacteria in CO2 environment [J]. Corros. Sci., 2017, 129: 16
5 Wright R F, Brand E R, Ziomek-Moroz M, et al. Effect of HCO3- on electrochemical kinetics of carbon steel corrosion in CO2-saturated brines [J]. Electrochim. Acta, 2018, 290: 626
6 Zhang Q L, Cui X, Yao R. Effect of HCO3- concentration on corrosion behavior of X80 pipeline steel in simulated soil solution with high pH value [J]. Mater. Prot., 2016, 49(12): 17
6 张秋利, 崔兴, 姚蓉. HCO3-浓度对X80管线钢在高pH值模拟土壤溶液中腐蚀行为的影响 [J]. 材料保护, 2016, 49(12): 17
7 Liu X, Mao X. Electrochemical polarization and stress corrosion cracking behaviours of a pipeline steel in dilute bicarbonate solution with chloride ion [J]. Scr. Metall. Mater., 1995, 33: 145
8 Xue F, Wei X, Dong J H, et al. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34: 1349
9 Han J B, Carey J W, Zhang J S. A coupled electrochemical-geochemical model of corrosion for mild steel in high-pressure CO2-saline environments [J]. Int. J. Greenhouse Gas Control, 2011, 5: 777
10 Han J B, Zhang J S, Carey J W. Effect of bicarbonate on corrosion of carbon steel in CO2 saturated brines [J]. Int. J. Greenhouse Gas Control, 2011, 5: 1680
[1] 张龙华, 李长君, 潘磊, 韩思柯, 王昕, 崔中雨. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[2] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[5] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[6] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[7] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[8] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[9] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[10] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[11] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[12] 严寒, 赵晴, 杜楠, 胡彦卿, 王力强, 王帅星. 镀锌层三价铬钝化成膜过程及耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
[13] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[14] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[15] 张建春,蒋金洋,李阳,施锦杰,左龙飞,王丹芊,麻晗. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.