Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1223-1233     CSTR: 32134.14.1005.4537.2023.362      DOI: 10.11902/1005.4537.2023.362
  研究报告 本期目录 | 过刊浏览 |
Al-Zn-In系牺牲阳极在模拟海洋环境下的电化学性能研究
张炬焕1, 刘静1(), 彭晶晶1, 张弦1, 吴开明1,2
1 武汉科技大学 高性能钢铁材料及其应用省部共建协同创新中心,耐火材料与冶金省部共建国家重点实验室,冶金工业过程系统科学湖北省重点实验室,武汉 430081
2 材谷金带(佛山)金属复合材料有限公司,佛山 528000
Electrochemical Performance of a Novel Al-Zn-In-Sn-La Sacrificial Anode Alloy in Simulated Marine Environments
ZHANG Juhuan1, LIU Jing1(), PENG Jingjing1, ZHANG Xian1, WU Kaiming1,2
1 Collaborative Innovation Center for Advanced Steels, State Key Laboratory of Refractory Material and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
2 Metals Valley & Band (Foshan) Metallic Composite Co., Ltd., Foshan 528000, China
引用本文:

张炬焕, 刘静, 彭晶晶, 张弦, 吴开明. Al-Zn-In系牺牲阳极在模拟海洋环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1223-1233.
Juhuan ZHANG, Jing LIU, Jingjing PENG, Xian ZHANG, Kaiming WU. Electrochemical Performance of a Novel Al-Zn-In-Sn-La Sacrificial Anode Alloy in Simulated Marine Environments[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1223-1233.

全文: PDF(16001 KB)   HTML
摘要: 

在商用Al-Zn-In牺牲阳极基础上,自行设计冶炼了Al-Zn-In-Sn-La牺牲阳极合金,并在模拟浅海和深海环境下,测试了两种合金的开路电位、动电位极化曲线、恒电位极化曲线、腐蚀失重等,对比分析讨论了两种牺牲阳极的放电量和电流效率。结果表明:模拟海洋环境下,冶炼合金放电量较商用合金略有提高,这与In、Zn、Sn协同活化作用破坏钝化膜完整性、增加钝化膜阴阳离子空位促进离子迁移有关。同时,冶炼合金电流效率较商用合金显著提高,浅海环境下电流效率由75.87%提高至90.01%,深海环境下由75.48%提高至82.99%。冶炼合金自腐蚀速率低、晶界偏析相与基体电位差较小导致微电偶作用减弱、稀土元素细化晶界促进均匀溶解等共同作用提高了电流效率。模拟深海环境下,两种合金的放电量较浅海环境大幅降低,这主要是由于低温、低含氧量导致离子溶解沉积速率降低,牺牲阳极活性点减少,Al合金牺牲阳极发生钝化。为克服深海放电量低下的问题,高熵合金的思路也许能显著提高活化合金元素的固溶度,从而提高其深海放电性能。

关键词 Al合金牺牲阳极模拟海洋环境放电量电流效率    
Abstract

Taking the commercial sacrificial anode alloy Al-Zn-In as reference, a novel alloy Al-Zn-In-Sn-La was designed and made. Then the performance of the two alloys in simulated conditions of shallow-sea and deep-sea was comparatively assessed via measurements of corrosion mass loss, open-circuit potential, potentiodynamic polarization curves, and potentiostatic polarization curves. Results showed that, the discharge capacity of the Al-Zn-In-Sn-La alloy was slightly higher than that of the commercial Al-Zn-In alloy in the simulated marine environments, which may be related to the breakdown of the integrity of the passive film and the improvement of the anion and cation vacancies of the passivation film to promote ion migration, due to the synergistic activation effect of In, Zn, and Sn. Meanwhile, the novel alloy presents current efficiency of 90.01%, which was much higher than 75.87% of the commercial alloy in shallow sea condition, similarly, that was 82.99% and 75.48% in the deep-sea conditions, respectively. All the actions of the low free-corrosion rate of the alloy, the weakened micro-galvanic effect between the precipitated phase along grain boundaries with the matrix, and the refinement of grain boundaries by rare earth elements to promote uniform dissolution may significantly promote the improvement of the current efficiency of the novel alloy. It is worth mentioning that, the discharge capacity of the two alloys are significantly reduced in the simulated deep-sea environment. Which may be ascribed to the lower temperature and oxygen content, the slow-down of dissolution and deposition rate of ions, which reduces the surface-active sites of the alloys, leading to the passivation of the sacrificial anode Al-based alloys. It is expected that the designment of high entropy alloys might be an effective approach to overcome the problem of low discharge capacity of sacrificial anode alloys in deep-sea environment, by significantly improving the solubility of active alloying elements, and thereby improving the deep-sea discharging performance.

Key wordsAl alloy sacrificial anode    simulated marine environment    discharge capacity    current efficiency
收稿日期: 2023-11-17      32134.14.1005.4537.2023.362
ZTFLH:  TG174  
基金资助:湖北省教育厅科学技术研究计划重点项目(D20221103);冶金工业过程系统科学湖北省重点实验室开放基金(Y202204)
通讯作者: 刘静,E-mail:liujing2015@wust.edu.cn,研究方向为金属材料深海腐蚀与防护
Corresponding author: LIU Jing, E-mail: liujing2015@wust.edu.cn
作者简介: 张炬焕,男,1999年生,硕士生
图1  深海高压反应釜结构示意图
图2  商用Al-Zn-In合金和冶炼Al-Zn-In-Sn-La合金金相显微形貌
图3  商用Al-Zn-In牺牲阳极显微形貌及EPMA分析结果
图4  冶炼的Al-Zn-In-Sn-La牺牲阳极显微形貌及EPMA分析结果
图5  模拟浅海和深海环境下Al-Zn-In和Al-Zn-In-Sn-La牺牲阳极的腐蚀速率
图6  Al-Zn-In和Al-Zn-In-Sn-La牺牲阳极模拟海洋环境浸泡10 d后腐蚀形貌
图7  模拟浅海和深海环境下Al-Zn-In和Al-Zn-In-Sn-La牺牲阳极动电位极化曲线对比
AlloyShallow-seaDeep-sea
Icorr / A·cm-2Ecorr / V vs. SCEIcorr / A·cm-2Ecorr / V vs. SCE
Al-Zn-In2.81 × 10-5-1.03652.06 × 10-5-0.9305
Al-Zn-In-Sn-La1.24 × 10-6-1.19352.91 × 10-5-1.0255
表1  两种牺牲阳极动电位极化曲线Tafel外推拟合的腐蚀电流密度与腐蚀电位
图8  模拟浅海和深海环境下Al-Zn-In和Al-Zn-In-Sn-La牺牲阳极OCP对比
图9  模拟浅海和深海环境下Al-Zn-In和Al-Zn-In-Sn-La牺牲阳极恒电位极化曲线
EnvironmentAlloyQ0 / A·h·kg-1Q / A·h·kg-1ΔW / mg·cm-2η / %
Shallow-seaAl-Zn-In291333.44 ± 8.3015.10 ± 3.7375.87 ± 0.66
Al-Zn-In-Sn-La288135.31 ± 3.7713.67 ± 2.3390.01 ± 5.24
Deep-seaAl-Zn-In29137.67 ± 1.563.51 ± 0.8875.48 ± 2.94
Al-Zn-In-Sn-La28818.69 ± 1.063.68 ± 0.4882.99 ± 10.69
表2  两种牺牲阳极合金在不同模拟海洋环境下的放电性能
图10  Al-Zn-In和Al-Zn-In-Sn-La牺牲阳极在两种模拟海洋环境下恒电位极化后溶解形貌
图11  Al-Zn-In和Al-Zn-In-Sn-La牺牲阳极表面形貌及SKPFM分析结果
1 Xu L K, Xin Y L, Ma L, et al. Challenges and solutions of cathodic protection for marine ships [J]. Corros. Commun., 2021, 2: 33
2 Qu J E, Qi G T. Current status of research on aluminum alloy sacrificial anodes [J]. Mater. Rep., 2001, 15(11): 24
2 屈钧娥, 齐公台. 铝合金牺牲阳极材料研究现状 [J]. 材料导报, 2001, 15(11): 24
3 Zhang G Q, Qian S C, Zhang Y H, et al. Electrochemical properties of Al-Zn-In aluminum alloy sacrificial anodes [J]. Equip. Environ. Eng., 2019, 16(8): 1
3 张国庆, 钱思成, 张有慧 等. Al-Zn-In系铝合金牺牲阳极电化学性能研究 [J]. 装备环境工程, 2019, 16(8): 1
4 Zhang G Q, Qian S C, Zhang Y H, et al. Study on electrochemical properties of aluminum alloy sacrificial anodes under the conditions of low temperature and high pressure in the deep sea [J]. Total Corros. Control, 2019, 33(3): 23
4 张国庆, 钱思成, 张有慧 等. 深海低温高压条件下铝合金牺牲阳极电化学性能研究 [J]. 全面腐蚀控制, 2019, 33(3): 23
5 Li C J, Du M. Research and development of cathodic protection for steels in deep seawater [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 10
5 李成杰, 杜 敏. 深海钢铁材料的阴极保护技术研究及发展 [J]. 中国腐蚀与防护学报, 2013, 33: 10
6 Cao P, Zhou T T, Bai X Q, et al. Research progress on corrosion and protection in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 12
6 曹 攀, 周婷婷, 白秀琴 等. 深海环境中的材料腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 12
7 Bai L, Conway B E. Role of indium in promoting anodic dissolution of Al-In alloys in non-aqueous electrolyte [J]. J. Appl. Electrochem., 1992, 22: 131
8 Bessone J B, Flamini D O, Saidman S B. Comprehensive model for the activation mechanism of Al-Zn alloys produced by indium [J]. Corros. Sci., 2005, 47: 95
9 Breslin C B, Carroll W M. The effects of indium precipitates on the electrochemical dissolution of Al-In alloys [J]. Corros. Sci., 1993, 34: 1099
10 Li W L, Yan Y G, Chen G, et al. The effect of temperature and dissolved oxygen concentration on the electrochemical behavior of Al-Zn-Inbased anodes [J]. Procedia Eng., 2011, 12: 27
11 Sun H J, Liu L, Li Y, et al. The performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated deep water environment [J]. Corros. Sci., 2013, 77: 77
12 Gao Q Y, Wang H H, Li C L, et al. Compositional optimization and field test of Al alloys for active sacrificial anode [J]. Corros. Sci. Prot. Technol., 2018, 30: 229
12 高青阳, 王焕焕, 李春霖 等. 铝合金活性阳极成分优化与实海实验研究 [J]. 腐蚀科学与防护技术, 2018, 30: 229
doi: 10.11903/1002.6495.2017.172
13 Hu S N. Research on property of Al-Zn-In sacrificial anode under simulate deep sea water [D]. Harbin: Harbin Engineering University, 2012
13 胡胜楠. 模拟深海环境下Al-Zn-In牺牲阳极性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2012
14 Jia H G. Research on property of Zn reference sacrificial electrode and aluminum alloy anodes under deep-sea simulation [D]. Qingdao: Ocean University of China, 2014
14 贾红刚. 模拟深海环境下锌参比电极与铝合金牺牲阳极性能研究 [D]. 青岛: 中国海洋大学, 2014
15 Zhang S. Research on the influence of deep sea environmental factors on sacrificial anode dissolution [D]. Harbin: Harbin Engineering University, 2017
15 张帅. 深海环境因素对牺牲阳极活化过程影响的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2017
16 Zhang R, Cui Y, Liu L, et al. Effect of synergy of water pressure and flow speed on free-corrosion behavior of Al-Zn-In sacrificial anode in deep-sea envioronment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 329
16 张 睿, 崔 宇, 刘莉 等. 深水压力-流速交互作用下Al-Zn-In牺牲阳极的自腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 329
17 Song Q Y, Zhang H B, Ma L, et al. Effect of Mg content on the properties of Al-Zn-In-Mg-Ti-Ga-Mn sacrificial anode [J]. Mater. Prot., 2021, 54(2): 70
17 宋卿源, 张海兵, 马 力 等. Mg含量对Al-Zn-In-Mg-Ti-Ga-Mn牺牲阳极性能的影响 [J]. 材料保护, 2021, 54(2): 70
18 Kulkarni A G, Gurrappa I. Effect of magnesium addition on surface free energy and anode capacity of indium activated aluminium alloys [J]. Brit. Corros. J., 1993, 28: 67
19 Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
19 孙海静, 覃 明, 李 琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508
doi: 10.11902/1005.4537.2019.180
20 Ma J L, Wen J B, Zhai W X, et al. In situ corrosion analysis of Al-Zn-In-Mg-Ti-Ce sacrificial anode alloy [J]. Mater. Charact., 2012, 65: 86
21 Li W Y, Cao R H, Xu L N, et al. The role of hydrogen in the corrosion and cracking of steels-a review [J]. Corros. Commun., 2021, 4: 23
22 Cheng K, Chen Q, Gao C W, et al. Correlation between microstructure and properties of aluminum alloy sacrificial anodes containing Mg in the seawater environment [J]. J. Guangxi Acad. Sci., 2017, 33: 195
22 程 坤, 陈 琴, 高朝文 等. 含Mg铝合金牺牲阳极在海水环境中组织与性能的相关性 [J]. 广西科学院学报, 2017, 33: 195
23 Ma J L, Wen J B. The effects of lanthanum on microstructure and electrochemical properties of Al-Zn-In based sacrificial anode alloys [J]. Corros. Sci., 2009, 51: 2115
24 Saeri M R, Keyvani A. Optimization of manganese and magnesium contents in as-cast aluminum-zinc-indium alloy as sacrificial anode [J]. J. Mater. Sci. Technol., 2011, 27: 785
25 Li W L. New type deep-water aluminum alloy sacrificial anode preparation and performance research [D]. Nanjing: Nanjing University of Science & Technology, 2012
25 李威力. 新型深海铝合金牺牲阳极研制及性能研究 [D]. 南京: 南京理工大学, 2012
26 Saidman S B, Bessone J B. Cathodic polarization characteristics and activation of aluminium in chloride solutions containing indium and zinc ions [J]. J. Appl. Electrochem., 1997, 27: 731
27 Gudić S, Radošević J, Smoljko I, et al. Cathodic breakdown of anodic oxide film on Al and Al-Sn alloys in NaCl solution [J]. Electrochim. Acta, 2005, 50: 5624
28 Keir D S, Pryor M J, Sperry P R. Galvanic corrosion characteristics of aluminum alloyed with group IV metals [J]. J. Electrochem. Sci., 1967, 114: 777
29 Keir D S, Pryor M J, Sperry P R. The influence of ternary alloying additions on the galvanic behavior of aluminum-Tin Alloys [J]. J. Electrochem. Soc., 1969, 116: 319
30 Venugopal A, Veluchamy P, Selvam P, et al. X-Ray photoelectron spectroscopic study of the oxide film on an aluminum-tin alloy in 3.5% sodium chloride solution [J]. Corrosion, 1997, 53: 808
31 Salinas D R, Bessone J B. Electrochemical Behavior of Al-5%Zn-0.1%Sn sacrificial anode in aggressive media: influence of its alloying elements and the solidification structure [J]. Corrosion, 1991, 47: 665
32 El Shayeb H A, Abd El Wahab F M, Zein El Abedin S, et al. Electrochemical behaviour of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chloride solutions containing stannous ions [J]. Corros. Sci., 2001, 43: 655
33 He J G, Wen J B, Li X D. Effects of cerium on microstructure and electrochemical properties of Al-Zn-Sn sacrificial anodes [A]. International Conference on Advances in Materials and Manufacturing Processes [C]. Trans Tech Publications Ltd, 2011.
34 Han H M, Wang G W, Ren W. Electrochemical performance of sacrificial anodes in Al-Zn-Sn-Bi alloy with the addition of Ga and Ce [J]. Mater. Prot., 2012, 45(8): 7, 23
34 韩红民, 王国伟, 任 伟. Al-Zn-Sn-Bi系合金添加Ga, Ce后牺牲阳极的电化学性能 [J]. 材料保护, 2012, 45(8): 7, 23
35 Hou D L, Li D F, Han L, et al. Effect of lanthanum addition on microstructure and corrosion behavior of Al-Sn-Bi anodes [J]. J. Rare Earths, 2011, 29: 129
36 Zhang Y H, Yang M T, Zhang H B, et al. Electrochemical performance of Al-Zn-Sn-Ce sacrificial anode in alternating dry and wet environment [J]. Equip. Environ. Eng., 2023, 20(6): 75
36 张一晗, 杨美桐, 张海兵 等. Al-Zn-Sn-Ce牺牲阳极干湿交替环境电化学性能研究 [J]. 装备环境工程, 2023, 20(6): 75
37 Qi G T, Xiong W, Zhu W T. Effect of segregation on initiation of corrosion of aluminium sacrificial anode containing mischmetal [J]. Corros. Eng. Sci. Technol., 2011, 46: 458
38 Xiong W, Qi G T, Guo X P, et al. Anodic dissolution of Al sacrificial anodes in NaCl solution containing Ce [J]. Corros. Sci., 2011, 53: 1298
39 Liu X, Cheng K, Chen Q, et al. Effect of lanthanum content on the comprehensive electrochemical performance of aluminium alloy sacrificial anode in the marine [J]. J. Guangxi Acad. Sci., 2016, 32: 168
39 刘 欣, 程 坤, 陈琴 等. 镧含量对铝合金牺牲阳极海水综合电化学性能的影响 [J]. 广西科学院学报, 2016, 32: 168
40 Venugopal A, Raja V S. AC impedance study on the activation mechanism of aluminium by indium and zinc in 3.5% NaCl medium [J]. Corros. Sci., 1997, 39: 2053
41 Tamada A, Tamura Y. The electrochemical characteristics of aluminum galvanic anodes in an arctic seawater [J]. Corros. Sci., 1993, 34: 261
42 Xu H Y, Li Y B. Activation behavior of aluminum sacrificial anodes in sea water [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 186
42 徐宏妍, 李延斌. 铝基牺牲阳极在海水中的活化行为 [J]. 中国腐蚀与防护学报, 2008, 28: 186
[1] 罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[2] 尚小标, 肖人友, 李佳剑, 张志浩. 基于多物理场耦合的铜电解槽阳极腐蚀均匀性研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 663-670.
[3] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[4] 赵国强, 魏英华, 李京. Al-Zn-In牺牲阳极在不同工作电流密度下电流效率及溶解机制的研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[5] 侯军才,梁国军,乔锦华,张秋美. 低Mn含量高电位镁合金牺牲阳极[J]. 中国腐蚀与防护学报, 2012, 32(5): 403-406.
[6] 李威力,闫永贵,陈光,马力. 合金元素对铝基牺牲阳极性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(2): 127-132.
[7] 侯军才,张秋美. 高电位镁牺牲阳极研究进展[J]. 中国腐蚀与防护学报, 2011, 31(2): 81-85.
[8] 孔小东;丁振斌;朱梅五. 含Mg铝合金牺牲阳极的电流效率及其影响因素[J]. 中国腐蚀与防护学报, 2010, 30(1): 6-10.
[9] 郝小军; 宋诗哲 . 电偶电流评价牺牲阳极性能[J]. 中国腐蚀与防护学报, 2005, 25(3): 176-178 .
[10] 齐公台; 郭稚弧; 屈钧娥 . 合金元素Mg对含RE铝阳极组织与性能的影响[J]. 中国腐蚀与防护学报, 2001, 21(4): 220-224 .