Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 658-668     CSTR: 32134.14.1005.4537.2023.208      DOI: 10.11902/1005.4537.2023.208
  研究报告 本期目录 | 过刊浏览 |
海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响
邢少华1, 彭文山1(), 钱峣1,2, 李相波1, 马力1, 张大磊3
1.中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护全国重点实验室 青岛 266237
2.青岛市即墨区工业和信息化局 青岛 266205
3.中国石油大学(华东)材料科学与工程学院 青岛 266580
Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments
XING Shaohua1, PENG Wenshan1(), QIAN Yao1,2, LI Xiangbo1, MA Li1, ZHANG Dalei3
1. National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2. Qingdao Jimo District Bureau of Industry and Information Technology, Qingdao 266205, China
3. School of Materials Science and Engineering, China University of Petroleum(East China), Qingdao 266580, China
引用本文:

邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
Shaohua XING, Wenshan PENG, Yao QIAN, Xiangbo LI, Li MA, Dalei ZHANG. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 658-668.

全文: PDF(12438 KB)   HTML
摘要: 

采用动电位极化曲线、电化学阻抗谱以及Mott-Schottky曲线等电化学测试方法研究了2205不锈钢管路材料在流动海水中的耐点蚀性能,并对测试后的试样进行了腐蚀形貌观察。结果表明,抛光状态和钝化状态下,试样表面均出现了明显的点蚀形貌,点蚀电位在0.9~1.2 V之间。在静态环境中材料的耐点蚀性要强于流动海水中;随着流速上升,材料的耐点蚀性并未发生明显变化,但表面钝化膜在流动海水中失去了再钝化能力。2205不锈钢表面钝化膜呈现n型和p型两种半导体特征,说明不锈钢表面钝化膜呈现双层结构,主要由外层Fe的氧化物和内层Cr的氧化物组成。钝化处理后试样的耐点蚀性能有所上升,但钝化膜的半导体性质未发生明显变化。海水冲刷使得不锈钢耐点蚀性能下降,不同表面处理的2205不锈钢在海水冲刷下表面钝化膜特性差异导致不锈钢点蚀敏感性不同。

关键词 2205不锈钢海水管路冲刷腐蚀电化学点蚀钝化膜    
Abstract

2205 stainless steel is commonly used in pipeline systems. In the presence of flowing seawater the failure of passivation film on tubing can easily lead to accidents such as pipeline leakage. Therefore, it is of great significance to acquire the impact of flowing seawater on the pitting corrosion behavior of 2205 stainless steel with different surface treatments. Hence, 2205 stainless steel was firstly subjected to polish-treatment and passivation-treatment respectively, and then the pitting behavior of which in flowing seawater was assessed by means of electrochemical testing methods such as potentiodynamic polarization curve, electrochemical impedance spectroscopy, and Mott-Schottky curve as well as characterization of their morphology variation with corrosion process. It was found that there were obvious pits formed on the surface of either the polished or passivated steel, with pitting potentials ranging from 0.9 V to 1.2 V. The pitting resistance of the steel is higher in static seawater rather than in flowing seawater, but as the flow rate increases, the pitting resistance of the steel does not change significantly, however, the surface passivation film loses its re-passivation ability in flowing seawater. The passivation film on the surface of 2205 stainless steel exhibits two semiconductor characteristics: n-type and p-type, indicating that the passivation film presents a double-layer structure, mainly composed of oxides of Fe (outer portion) and Cr (inner portion). After passivation treatment, the pitting corrosion resistance of the steel increased, but the semiconductor properties of the passivation film did not show significant changes. The flowing seawater could reduce the pitting corrosion resistance of the steel, but the difference in the surface passivation film characteristics of the steel pre-treated by two methods could result in different sensitivity to pitting corrosion of the 2205 stainless steel in flowing seawaters.

Key words2205 stainless steel    seawater pipeline    erosion corrosion    electrochemistry    pitting corrosion    passivation film
收稿日期: 2023-06-30      32134.14.1005.4537.2023.208
ZTFLH:  TG172  
通讯作者: 彭文山,E-mail: pengwenshan1386@126.com,研究方向为海洋环境腐蚀、多相流冲蚀及腐蚀/冲蚀仿真
Corresponding author: PENG Wenshan, E-mail: pengwenshan1386@126.com
作者简介: 邢少华,男,1981年生,博士,高级工程师
图1  抛光和钝化处理的2205不锈钢在不同流速海水中的动电位极化曲线
图2  抛光和钝化处理的2205不锈钢的点蚀电位和流速的关系
Surface stateEp / VEb-Ep
Polishing0.9190.168
Passivation1.0160.182
表1  静态海水环境中2205不锈钢点蚀保护电位和滞后环大小
图3  经抛光和钝化处理的2205不锈钢在流动海水中的极化曲线
图4  不同流速海水中抛光处理2205不锈钢的电化学阻抗谱图
图5  不锈钢试样的EIS拟合等效电路
V / m·s-1nRt / Ω·cm2
00.923.90 × 106
10.923.70 × 106
20.923.67 × 106
30.923.88 × 106
40.924.01 × 106
50.923.77 × 106
表2  流动海水下抛光处理2205不锈钢电化学阻抗谱拟合数据
图6  不同海水流速下钝化处理2205不锈钢的电化学阻抗谱
V / m·s-1nRt / Ω·cm2
00.934.08 × 106
10.933.82 × 106
20.933.52 × 106
30.934.05 × 106
40.934.09 × 106
50.933.71 × 106
表3  流动海水下钝化处理2205不锈钢电化学阻抗谱拟合数据
图7  两种表面状态2205不锈钢在不同流速海水中的Mott-Schottky曲线
图8  两种表面状态2205不锈钢在不同流速海水中的受主密度和施主密度对比
图9  抛光处理试样在不同流速海水中点蚀坑的三维形貌
图10  钝化处理试样在不同流速海水中点蚀坑的三维形貌
图11  抛光2205不锈钢试样在不同流速海水中点蚀坑的SEM形貌
V / m·s-1SiSNiFeCrMn
01.021.3923.3765.1023.371.53
10.98-4.6959.4121.951.27
30.881.344.9061.1222.601.51
51.101.175.0058.3820.931.48
表4  抛光处理2205不锈钢试样在不同流速海水中腐蚀表面元素组成 (atomic fraction / %)
图12  钝化2205不锈钢试样在不同流速海水中点蚀坑的SEM形貌
V / m·s-1SiSNiFeCrMnMo
00.75-4.4358.7018.841.231.38
11.180.924.2755.5017.920.951.20
30.63-4.0257.1418.021.211.27
50.58-4.2656.6817.400.791.26
表5  钝化处理2205不锈钢试样在不同流速海水中腐蚀表面元素组成 (atomic fraction / %)
1 Yang J W, Cai N, Jiang B, et al.Corrosion behavior of Ni, Cr-containning corrosion resistant steel in high temperature and high Cl- environment [J]. Corros. Prot., 2022, 43(4): 13
1 杨建炜, 蔡 宁, 姜 杉 等. 高温高Cl-环境中含Ni、Cr耐蚀钢的腐蚀行为 [J].腐蚀与防护, 2022, 43(4): 13
2 Hu J P, Liu Z Y, Hu S S, et al. Stress corrosion behavior of 304 stainless steel in simulated deep and shallow seawater environments [J]. Surf. Technol., 2015, 44(3): 9
2 胡建朋, 刘智勇, 胡山山 等. 304不锈钢在模拟深海和浅海环境中的应力腐蚀行为 [J]. 表面技术, 2015, 44(3): 9
3 Ren P W. Study of tribocorrosion of three different corrosion reisistance materials under deep-sea high pressure [D]. Beijing: University of Science and Technology Beijing, 2022
3 任鹏伟. 三类不同耐蚀性材料在深海高压下的磨蚀研究 [D]. 北京: 北京科技大学, 2022
4 Shao D X, Wu M, Xie F, et al. The research progress of corrosion properties of stainless steel in seawater [J]. J. Liaoning Shihua Univ., 2018, 38(1): 26
4 邵冬雪, 吴 明, 谢 飞 等. 不锈钢在海水中腐蚀特性研究进展 [J]. 辽宁石油化工大学学报, 2018, 38(1): 26
5 Li J D, Chen C, Zhang S G, et al. Research progress on localized corrosion behavior of stainless steel under different stress conditions [J]. Surf. Technol., 2021, 50(3): 101
5 李嘉栋, 陈 超, 张世贵 等. 不同应力条件下不锈钢局部腐蚀行为的研究进展 [J]. 表面技术, 2021, 50(3): 101
6 Cui L, Kang W Q, Wu P, et al. Study on erosion corrosion of 13Cr stainless steel under action of high-speed multiphase flow [J]. J. Xi'an Shiyou Univ. (Natl. Sci. Ed.), 2020, 35(3): 92
6 崔 璐, 康文泉, 吴 鹏 等. 多相高速流动环境中13Cr不锈钢冲刷腐蚀特性 [J]. 西安石油大学学报(自然科学版), 2020, 35(3): 92
7 Qiao Y X, Liu F H, Ren A, et al. Erosion-corrosion behavior of high nitrogen stainless steel and commercial 321 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 141
7 乔岩欣, 刘飞华, 任 爱 等. 高氮钢和321不锈钢的冲刷腐蚀行为 [J]. 中国腐蚀与防护学报, 2012, 32: 141
8 Yang Y, Hou X L, Li M C. Effect of vacuum pressure on the initiation and propagation of pitting corrosion of 2205 duplex stainless steel in concentrated seawater [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1023
doi: 10.1007/s40195-021-01329-8
9 Zeng H T, Yang Y, Liu L L, et al. Pitting and crevice corrosion evolution characteristics of 2205 duplex stainless steel in hot concentrated seawater [J]. J. Solid State Electrochem., 2021, 25: 1555
doi: 10.1007/s10008-021-04935-9
10 Le Manchet S, Robin E, Monnot M. Corrosion resistance of stainless steels and nickel alloys in seawater [A]. CORROSION 2021 [C]. Virtual, 2021.
11 Bhandari J, Lau S, Abbassi R, et al. Accelerated pitting corrosion test of 304 stainless steel using ASTM G48; Experimental investigation and concomitant challenges [J]. J. Loss Prevent. Process Ind., 2017, 47: 10
doi: 10.1016/j.jlp.2017.02.025
12 Ryan M P, Williams D E, Chater R, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
doi: 10.1038/415770a
13 Lü Y X. Analysis of Cl- corrosion resistance of high Mo super austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 765
13 吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析 [J]. 中国腐蚀与防护学报, 2022, 42: 765
doi: 10.11902/1005.4537.2022.100
14 Shi L, Zheng Z J, Gao Y. Mechanism and research methods of pitting corrosion of stainless steels [J]. Mater. Rep., 2015, 29(23): 79
14 石 林, 郑志军, 高 岩. 不锈钢的点蚀机理及研究方法 [J]. 材料导报, 2015, 29(23): 79
15 Hoar T P, Mears D C, Rothwell G P. The relationships between anodic passivity, brightening and pitting [J]. Corros. Sci., 1965, 5: 279
doi: 10.1016/S0010-938X(65)90614-1
16 Marcus P, Maurice V, Strehblow H H. Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure [J]. Corros. Sci., 2008, 50: 2698
doi: 10.1016/j.corsci.2008.06.047
17 Zheng S J, Wang Y J, Zhang B, et al. Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels [J]. Acta Mater., 2010, 58: 5070
doi: 10.1016/j.actamat.2010.05.043
18 Fan X H, Yu Y, Zhang Z R, et al. Pitting and repassivation Behavior of 316L austenitic stainless steel under different potentials [J]. Surf. Technol., 2020, 49(7): 287
18 樊学华, 于 勇, 张子如 等. 316L奥氏体不锈钢在不同电位下的点蚀和再钝化行为研究 [J]. 表面技术, 2020, 49(7): 287
19 Zhang B, Liu B Y, Xue Z L, et al. Erosion resistance of 304 stainless steel in artificial marine environment at high temperature and high flow velocity [J]. Mater. Prot., 2018, 51(11): 25
19 张 斌, 柳秉毅, 薛忠亮 等. 304不锈钢在高温高流速模拟海水中的耐冲蚀性能 [J]. 材料保护, 2018, 51(11): 25
20 Deng Y S, Huang G Q. Corrosion behavior of cast stainless steels in seawater [J]. Equip. Environ. Eng., 2005, 2(2): 76
20 邓永生, 黄桂桥. 海水环境中铸造不锈钢的腐蚀行为 [J]. 装备环境工程, 2005, 2(2): 76
21 Wang X, Liu F, Li Y, et al. Corrosion behavior of B10 Cu-Ni alloy pipe in static and dynamic seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 119
21 王 晓, 刘 峰, 李焰 等. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43: 119
22 Wang H R, Yao P, Liu Y M, et al. Studies of corrosion and electrochemical properties of HDR duplex stainless steel as seawater tubes [J]. Corros. Prot., 2001, 22(1): 5
22 王洪仁, 姚 萍, 刘玉梅 等. 新型海水管系材料HDR双相不锈钢的腐蚀和电化学性能 [J]. 腐蚀与防护, 2001, 22(1): 5
23 Wang C. Study on the electrochemical surface modification of stainless steel and its mechanism of corrosion resistance [D]. Xiamen: Xiamen University, 2019
23 王 成. 不锈钢表面电化学处理及耐腐蚀机理研究 [D]. 厦门: 厦门大学, 2019
24 Zhang M L, Wang D, Wang X F, et al. Influence of Cl- concentrations on the corrosion behavior of 316L stainless steel in ocean environment [J]. Mater. Prot., 2019, 52(1): 34
24 张鸣伦, 王 丹, 王兴发 等. 海水环境中Cl-浓度对316L不锈钢腐蚀行为的影响 [J]. 材料保护, 2019, 52(1): 34
25 Sikora J, Sikora E, Macdonald D D. The electronic structure of the passive film on tungsten [J]. Electrochim. Acta, 2000, 45: 1875
doi: 10.1016/S0013-4686(99)00407-7
26 Lin Y H, Du R G, Hu R G, et al. A correlation study of corrosion resistance and semiconductor properties for the electrochemically modified passive film of stainless steel [J]. Acta Phys. Chim. Sin., 2005, 21: 740
doi: 10.3866/PKU.WHXB20050709
26 林玉华, 杜荣归, 胡融刚 等. 不锈钢钝化膜耐蚀性与半导体特性的关联研究 [J]. 物理化学学报, 2005, 21: 740
27 Geringer J, Macdonald D D. Modeling fretting-corrosion wear of 316L SS against poly (methyl methacrylate) with the point defect model: fundamental theory, assessment, and outlook [J]. Electrochim. Acta, 2012, 79(4): 17
doi: 10.1016/j.electacta.2012.06.028
28 Bi F Q, Zhou B, Wang Y. Effect of alloying on anti-corrosion performance of stainless steel: a review [J]. Mater. Rep., 2019, 33: 1206
28 毕凤琴, 周 帮, 王 勇. 合金化对不锈钢耐蚀性能影响的研究进展 [J]. 材料导报, 2019, 33: 1206
29 Wu C F, Wang X H, Zhang H L, et al. Effect of alloy elements on the mechanical properties and pitting corrosion resistance of 316LN austenitic stainless steel [J]. Chin. J. Eng., 2015, 37: 1157
29 吴从风, 王心禾, 张海龙 等. 合金元素对316LN不锈钢的力学性能和点蚀性能的影响 [J]. 工程科学学报, 2015, 37: 1157
[1] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[2] 戴威, 刘园园, 涂闻芮, 孙阳庭, 李劲, 蒋益明. 外加电位下Ag/Sn电偶的腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 700-706.
[3] 黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
[4] 傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[5] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[6] 龙武剑, 唐杰, 罗启灵, 丘章鸿, 王海龙. 生物质碳点对Q235钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
[7] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[8] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[9] 麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[10] 邓双九, 李昌, 余梦辉, 韩兴. IN625激光熔覆层腐蚀致微裂纹扩展机理研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
[11] 李文杰, 车晓钰, 唐永存, 刘光明, 田文明, 何华林, 刘晨辉. 塑性变形加工对纯锌在天津土壤浸出液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 497-504.
[12] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[13] 凌东, 何坤, 余靓, 董立谨, 张华礼, 李玉飞, 王勤英, 张智. 高温高压CO2 环境中超级13Cr不锈钢点蚀有限元模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 303-311.
[14] 王彤彤, 张隽睿, 高云, 高荣杰. NH4F-(NH4)2SO4 复合电解液中制备莲藕状TiO2 纳米管阵列及光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[15] 常雪婷, 宋嘉琪, 王冰, 王东胜, 陈文聪, 王海丰. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.