Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (3): 493-500    DOI: 10.11902/1005.4537.2021.126
  研究报告 本期目录 | 过刊浏览 |
Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响
陈昊1, 樊志彬2, 陈志坚1,3, 周学杰1,3(), 郑鹏华1,3, 吴军1,4
1.武汉材料保护研究所有限公司 武汉 430030
2.国网山东省电力公司电力科学研究院 济南 250001
3.武汉大气淡水环境材料腐蚀国家野外观测科学研究站 武汉 430030
4.新疆尉犁大气环境材料腐蚀国家野外观测科学研究站 尉犁 841500
Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction
CHEN Hao1, FAN Zhibin2, CHEN Zhijian1,3, ZHOU Xuejie1,3(), ZHENG Penghua1,3, WU Jun1,4
1.Wuhan Institute of Materials Protection Co. Ltd. , Wuhan 430030, China
2.State Grid Shandong Electric Power Research Institute, Jinan 250001, China
3.Wuhan Materials Corrosion National Observation and Research Station, Wuhan 430030, China
4.Yuli Materials Corrosion National Observation and Research Station, Yuli 841500, China
全文: PDF(3078 KB)   HTML
摘要: 

采用电化学实验,并结合X射线衍射、X射线光电子能谱、分子动力学模拟测试与分析,从宏观电化学角度分析了439不锈钢在不同腐蚀溶液中的腐蚀行为,从微观分子层次阐明了腐蚀过程相应机理。电化学实验结果表明,对比单一腐蚀离子环境,Cl-与HSO3-同时存在时会显著增加439不锈钢材料的腐蚀速率;分子动力学模拟结果表明,相对单一腐蚀离子体系,混合腐蚀离子体系中各腐蚀离子与钝化膜的吸附更紧密,扩散系数也显著提高。439不锈钢在含Cl-环境中的腐蚀速率会随Cl-浓度的增加而逐渐加快,但到达Cl-临界浓度后会逐渐降低;而当环境中同时存在Cl-和HSO3-时,439不锈钢的腐蚀被加速。

关键词 439不锈钢钝化膜点蚀电化学实验分子动力学模拟    
Abstract

The pitting corrosion behavior and mechanism of ferritic stainless steel 439 in various solutions with different concentration of anions Cl- and HSO3- was studied by means of electrochemical test, X-ray diffractometer, X-ray photoelectron spectroscopy, as well as molecular dynamics simulation. Electrochemical test results show that, the corrosion rate of 439 stainless steel will be significantly increased in solutions with simultaneous presence of Cl- and HSO3- rather than that in solutions containing only one of the two anions. The molecular dynamics simulation results show that, compared with solutions containing only one of the two anions, in solutions of the mixed anions the corrosive ions were adsorbed much strongly to the passive film, and their diffusion coefficient is also significantly improved. The corrosion rate of 439 stainless steel in Cl- containing solutions will gradually increase with the increase of Cl- concentration, whereas after reaching the critical point, the corrosion rate will gradually decrease. However, when Cl- and HSO3- co-exist in the solution, the corrosion of 439 stainless steel is accelerated.

Key words439 stainless steel    passivation film    pitting corrosion    electrochemical test    molecular dynamics simulation
收稿日期: 2021-06-07     
ZTFLH:  TG172.3  
基金资助:国家电网有限公司总部科技项目(5200-202016471A-0-0-00)
通讯作者: 周学杰     E-mail: zhouxj11@163.com
Corresponding author: ZHOU Xuejie     E-mail: zhouxj11@163.com
作者简介: 陈昊,男,1996年生,硕士,助理工程师

引用本文:

陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
Hao CHEN, Zhibin FAN, Zhijian CHEN, Xuejie ZHOU, Penghua ZHENG, Jun WU. Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 493-500.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.126      或      https://www.jcscp.org/CN/Y2022/V42/I3/493

图1  439不锈钢在不同浓度NaCl溶液中的极化曲线,电化学阻抗图谱及拟合曲线模型
NaCl (aq)EcorrVIcorrμA·cm-2Pitting potential / VPassive areas VRsΩ·cm-2Q1F·cm-2n1R1Ω·cm-2Q2F·cm-2n2R2Ω·cm-2
3.5%-0.0710.1190.3200.23146.941.20×10-50.874.96×1041.93×10-50.654.05×105
6.0%-0.0990.1640.2860.26427.851.22×10-50.911.38×1042.09×10-50.643.67×105
10.0%-0.2180.5180.0920.19018.944.00×10-50.831.21×1045.73×10-50.401.24×105
14.0%-0.1750.5090.1830.23817.134.71×10-50.918.14×1032.74×10-50.662.13×105
18.0%-0.1400.2850.1600.18012.291.62×10-50.928.59×1032.52×10-50.612.71×105
表1  439不锈钢极化曲线及阻抗谱拟合参数
图2  439不锈钢在不同浓度NaHSO3溶液和NaCl、NaHSO3混合溶液中的循环极化曲线
Solution / mol·L-1Ecorr / VIcorr / μA·cm-2Eb / VEp / VEb-Ep / V
0.62 NaCl-0.0710.1190.320------
0.05 NaHSO3-0.0170.0670.7920.3320.460
0.10 NaHSO3-0.0730.1010.7790.3210.459
0.50 NaHSO3-0.0790.1470.6150.2270.388
(0.62+0.05) NaCl+NaHSO3-0.3580.938-0.189-0.490---
(0.62+0.10) NaCl+NaHSO3-0.2820.6130.258-0.491---
(0.62+0.50) NaCl+NaHSO3-0.3230.4050.424-0.444---
表2  循环极化曲线特征参数
图3  439不锈钢在不同浓度的NaHSO3和混合溶液中的电化学阻抗谱
Solution / (mol·L-1)Rs / Ω·cm-2Q1 / F·cm-2n1R1 / Ω·cm-2Q2 / F·cm-2n2R2 / Ω·cm-2
0.62 NaCl50.171.39×10-50.872.01×1044.08×10-50.652.07×105
0.05 NaHSO3485.701.82×10-50.914.01×1041.37×10-50.457.55×105
0.10 NaHSO3258.402.91×10-50.981.60×1042.81×10-50.753.09×105
0.50 NaHSO364.092.11×10-50.371.36×1042.52×10-50.902.95×105
(0.62+0.05) NaCl+NaHSO340.652.94×10-50.904.24×1032.98×10-50.822.48×104
(0.62+0.10) NaCl+NaHSO338.862.41×10-50.918.15×1033.37×10-50.603.21×104
(0.62+0.50) NaCl+NaHSO327.722.76×10-50.917.70×1033.87×10-50.723.34×104
表3  电化学阻抗谱等效电路拟合参数
图4  标准样表面X射线衍射谱图
图5  标准样表面X射线光电子能谱
图6  3种腐蚀体系及元素模型图
图7  分子动力学模拟试验平衡判据
Phase0.62 mol/L NaCl0.62 mol/L NaHSO3(0.31+0.31) mol/L (NaCl+NaHSO3)
Cl-HSO3-(Cl-, HSO3-)
Fe2O3-1323.182226-24.479770-1432.066031
Cr2O3-8789.661657-89.576001-7837.384689
FeO-2582.008070-3877.935214-11311.721163
表4  腐蚀离子与金属氧化物表面相互作用能
Phase3.5%NaCl0.62 mol/L NaHSO3(0.31+0.31) mol/L (NaCl+NaHSO3)
Cl-HSO3-Cl-HSO3-
Fe2O32.02×10-53.24×10-51.64×10-52.13×10-5
Cr2O35.86×10-102.23×10-54.32×10-82.82×10-5
FeO4.39×10-51.41×10-57.06×10-58.26×10-6
表5  腐蚀离子的扩散系数
1 Ren J H, Chen A Z, Li Z G, et al. Corrosion resistance evaluation of 439 ultra-pure ferritic stainless steel [J]. China Metall., 2018, 28(3): 35
1 任娟红, 陈安忠, 李照国等. 439超纯铁素体不锈钢耐蚀性评价 [J]. 中国冶金, 2018, 28(3): 35
2 Qin H P, Chen H T, Lang Y P, et al. Effects of non-metallic inclusions on pitting corrosion resistance of 439M ferritic stainless steel [J]. Hot Work. Technol., 2016, 45(10): 89
2 覃怀鹏, 陈海涛, 郎宇平等. 非金属夹杂物对439M铁素体不锈钢耐点蚀性能的影响 [J]. 热加工工艺, 2016, 45(10): 89
3 Loto R T. Electrochemical corrosion characteristics of 439 ferritic, 301 austenitic, S32101 duplex and 420 martensitic stainless steel in sulfuric acid/NaCl solution [J]. J. Bio. Tribo. Corros., 2017, 3: 24
4 Song D N, Bai Y Y, Yu X L. Status in quo and development on the Chinese stainless steel industry [J]. Sichuan Nonferrous Met., 2009, (1): 1
4 宋丹娜, 白艳英, 于秀玲. 浅谈中国不锈钢产业的现状及可持续发展 [J]. 四川有色金属, 2009, (1): 1
5 Hu Z Z, Zhou X J, Wu J, et al. Initial corrosion behavior of carbon steel Q235 in petrochemical atmospheric environment [J]. Equip. Environ. Eng., 2011, 8(3): 30
5 胡章枝, 周学杰, 吴军等. Q235碳钢在石化大气环境中初期腐蚀行为 [J]. 装备环境工程, 2011, 8(3): 30
6 Cao C, Zheng S S, Hu W B, et al. Review of research on mechanical properties of steel structure under atmospheric environment corrosion [J]. Mater. Rev., 2020, 34(11): 162
6 曹琛, 郑山锁, 胡卫兵等. 大气环境腐蚀下钢结构力学性能研究综述 [J]. 材料导报, 2020, 34(11): 162
7 Wang L Y, Wang X T, Sun H F, et al. Study of SO2 influence on metal corrosion in atmospheric environment [J]. Equip. Environ. Eng., 2011, 8(2): 62
7 王丽媛, 王秀通, 孙好芬等. 大气环境中SO2影响金属腐蚀的研究进展 [J]. 装备环境工程, 2011, 8(2): 62
8 Wei X, Dong J H, Tong J, et al. Influence of temperature on pitting corrosion resistance of Cr26Mo1 ultra pure high chromium ferrite stainless steel in 3.5%NaCl solution [J]. Acta Metall. Sin., 2012, 48: 502
8 魏欣, 董俊华, 佟健等. 温度对Cr26Mo1超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响 [J]. 金属学报, 2012, 48: 502
9 Hua H Z, Zhao G Z, Li L X, et al. An XPS study of passive film and its breakdown on ferritic stainiess steel in Cl--containing neutral solution [J]. J. Chin. Soc. Corros. Prot., 1987, 7: 233
9 华惠中, 赵国珍, 李丽霞等. Fe-Cr-Mo系铁素体不锈钢在中性氯离子介质中钝化膜及其破坏的XPS研究 [J]. 中国腐蚀与防护学报, 1987, 7: 233
10 Morioka S, Sawada Y, Shiobara K. Effect of SO2 gas on pitting corrosion of austenitic stainless steel [J]. Corros. Eng. Dig., 1965, 14: 535
11 Guo L, Zhang S T, Li W P, et al. Experimental and computational studies of two antibacterial drugs as corrosion inhibitors for mild steel in acid media [J]. Mater. Corros., 2014, 65: 935
12 Susmikanti M, Andiwijayakusuma D, Ghofir, et al. Molecular dynamics simulation to studying the effect of molybdenum in stainless steel on the corrosion resistance by lead-bismuth [J]. AIP Conf. Proc., 2012, 1448: 185
13 Razaghi Z, Rezaei M. Corrosion mechanism of sulfate, chloride, and tetrafluoroborate ions interacted with Ni-19wt% Cr coating: A combined experimental study and molecular dynamics simulation [J]. J. Mol. Liq., 2020, 319: 114243
14 Wang Z W, Li B, Lin Q B, et al. Molecular dynamics simulation on diffusion of five kinds of chemical additives in polypropylene [J]. Packag. Technol. Sci., 2018, 31: 277
15 Liu L F, Liu J X, Zhang J, et al. Molecular dynamics simulation of the corrosive medium diffusion behavior inhibited by the corrosion inhibitor membranes [J]. Chem. J. Chin. Univ., 2010, 31: 537
15 刘林法, 刘金祥, 张军等. 缓蚀剂膜抑制腐蚀介质扩散行为的分子动力学模拟 [J]. 高等学校化学学报, 2010, 31: 537
[1] 赵宝珠, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[2] 辛叶春, 徐伟, 赵东杨, 张波. 超细层片结构Al-4%Cu合金的点蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
[3] 程琪栋, 王燕华. 表面划痕对304不锈钢液滴腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[4] 张文丽, 张振龙, 吴兆亮, 韩思柯, 崔中雨. 温度对316L不锈钢在油田污水中点蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[5] 李鸿瑾, 王歧山, 廖子涵, 孙祥锐, 孙晖, 张新阳, 陈旭. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[6] 雷哲缘, 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对2002双相不锈钢点蚀萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[7] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[8] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[9] 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对双相不锈钢微区极化行为及点蚀抗性的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[10] 张龙华, 李长君, 潘磊, 韩思柯, 王昕, 崔中雨. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[11] 纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[12] 宫克, 吴明, 张胜. HCO3-对X90管线钢应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 727-731.
[13] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[14] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[15] 杨众魁, 史艳华, 乔忠立, 梁平, 王玲. ClO2-对S2205不锈钢在Cl-介质中点蚀初期行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 523-528.