Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (3): 425-434    DOI: 10.11902/1005.4537.2021.161
  中国腐蚀与防护学会杰出青年学术成就奖论文专栏 本期目录 | 过刊浏览 |
CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究
赵宝珠, 朱敏(), 袁永锋, 郭绍义, 尹思敏
浙江理工大学机械与自动控制学院 杭州 310018
Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution
ZHAO Baozhu, ZHU Min(), YUAN Yongfeng, GUO Shaoyi, YIN Simin
School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China
全文: PDF(11429 KB)   HTML
摘要: 

采用电化学技术、X射线光电子能谱、原子力显微镜测试和浸泡实验研究了有/无热处理的等原子比CoCrFeMnNi高熵合金和管线钢在碱性土壤模拟溶液中的耐蚀性差异。结果表明:高熵合金呈现出局部腐蚀特征,腐蚀形态为零星分布的针孔状点蚀,而X80和X100管线钢表面发生了全面腐蚀,并有大尺寸腐蚀坑存在。高熵合金热处理后在碱性土壤模拟溶液中形成的钝化膜结构致密稳定,含有较多Cr的氧化物和水以及更少的FeO,有利于其钝化膜的保护性;而管线钢钝化膜薄且含有缺陷,对基体的保护性较差。有/无热处理高熵合金的耐蚀性均优于X80和X100管线钢,且热处理可提升高熵合金的耐蚀性能。

关键词 高熵合金管线钢耐蚀性点蚀钝化膜    
Abstract

The difference in the corrosion resistance between the as-cast and heat treated equiatomic CoCrFeMnNi high entropy alloy (HEA) and hot rolled X80 and X100 pipeline steels in a simulated alkaline soil solution was investigated by immersion test, electrochemical tests, XPS and AFM. The results show that the high entropy alloy exhibits the characteristics of local corrosion, and few pits are sporadically distributed on its surface, while X80 and X100 pipeline steels display the characteristics of severe general corrosion, with large size corrosion pits. Moreover, the passive film of HEA is compact and stable, and contains more Cr oxide, bound water and less FeO, which is conducive to increasing its corrosion resistance, whereas the passive film of pipeline steel is thinner and defective, and has poor protective ability. The corrosion resistance of the HEA before and after heat treatment is all better than those of X80 and X100 pipeline steels, and the corrosion resistance of the HEA can be further improved by heat treatment.

Key wordsHEA    pipeline steel    corrosion resistance    pitting corrosion    passive film
收稿日期: 2021-07-13     
ZTFLH:  TG142  
基金资助:浙江省自然科学基金(LY18E010004);国家市场监督管理总局科技计划项目(2019MK134)
通讯作者: 朱敏     E-mail: zmii2009@163.com
Corresponding author: ZHU Min     E-mail: zmii2009@163.com
作者简介: 赵宝珠,男,1996年生,硕士生

引用本文:

赵宝珠, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
Baozhu ZHAO, Min ZHU, Yongfeng YUAN, Shaoyi GUO, Simin YIN. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 425-434.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.161      或      https://www.jcscp.org/CN/Y2022/V42/I3/425

图1  铸态和热处理后的HEA及管线钢的微观组织
图2  铸态和热处理后HEA的XRD图谱
图3  HEA和管线钢在Na2CO3/NaHCO3溶液中的开路电位
图4  HEA和管线钢在Na2CO3/NaHCO3溶液中的动电位极化曲线及拟合的Ip和Ecorr
图5  HEA和管线钢在碱性土壤模拟溶液中的EIS图谱
图6  EIS数据的拟合电路
SampleRs / Ω·cm2Rf / 104 Ω·cm2Qf / 10-5 Ω-1·cm-2·s-nQdl / 10-5 Ω-1·cm-2·s-nRct / 105 Ω·cm2
As-cast HEA4.9412.913.7615.4370.472
Heat-treated HEA4.2166.262.433.222.93
X80 steel4.3350.726.3331.020.295
X100 steel4.1590.666.84636.630.196
表1  电化学阻抗谱拟合结果
图7  HEA和管线钢在碱性土壤模拟溶液中形成钝化膜的Mott-Schottky曲线载流子浓度及钝化膜厚度
图8  HEA和管线钢钝化膜的2D、3D形貌以及截线图
图9  有无热处理HEA表面钝化膜的XPS图谱
图10  有无热处理HEA的钝化膜组成比例
图11  HEA和管线钢在碱性土壤模拟溶液中的表面腐蚀形貌
图12  HEA和管线钢在碱性土壤模拟溶液中的平均腐蚀速率
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Xiang C, Wang J Z, Fu H M, et al. Corrosion behavior of several high-entropy alloys in high temperature high pressure water [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 107
2 向超, 王家贞, 付华萌等. 几种高熵合金在核电高温高压水中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2016, 36: 107
3 He J Y, Zhu C, Zhou D Q, et al. Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures [J]. Intermetallics, 2014, 55: 9
4 Zhu M, Yao L J, Liu Y Q, et al. Microstructure evolution and mechanical properties of a novel CrNbTiZrAlx (0.25≤x≤1.25) eutectic refractory high-entropy alloy [J]. Mater. Lett., 2020, 272: 127869
5 Jayaraj J, Thinaharan C, Ningshen S, et al. Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium [J]. Intermetallics, 2017, 89: 123
6 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
7 Liu T K, Wu Z, Stoica A D, et al. Twinning-mediated work hardening and texture evolution in CrCoFeMnNi high entropy alloys at cryogenic temperature [J]. Mater. Des., 2017, 131: 419
8 Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
9 Li R D, Niu P D, Yuan T C, et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. J. Alloy.Compd., 2018, 746: 125
10 Chew Y, Bi G J, Zhu Z G, et al. Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy [J]. Mater. Sci. Eng., 2019, 744A: 137
11 Jo M C, Lee S G, Sohn S S, et al. Effects of coiling temperature and pipe-forming strain on yield strength variation after ERW pipe forming of API X70 and X80 linepipe steels [J]. Mater. Sci. Eng., 2017, 682A: 304
12 Sha Q Y, Li D H. Microstructure, mechanical properties and hydrogen induced cracking susceptibility of X80 pipeline steel with reduced Mn content [J]. Mater. Sci. Eng., 2013, 585A: 214
13 Han S Y, Sohn S S, Shin S Y, et al. Effects of microstructure and yield ratio on strain hardening and Bauschinger effect in two API X80 linepipe steels [J]. Mater. Sci. Eng., 2012, 551A: 192
14 Arora K S, Pandu S R, Shajan N, et al. Microstructure and impact toughness of reheated coarse grain heat affected zones of API X65 and API X80 linepipe steels [J]. Int. J. Press. Vess. Pip., 2018, 163: 36
15 Li C Y, Chen X, He C, et al. Alternating current induced corrosion of buried metal pipeline: a review [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 139
15 李承媛, 陈旭, 何川等. 埋地金属管道交流电腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 139
16 Li Z, Wan H X, Song D D, et al. Corrosion behavior of X80 pipeline steel in the presence of Brevibacterium halotolerans in Beijing soil [J]. Bioelectrochemistry, 2019, 126: 121
17 Arzaghi E, Chia B H, Abaei M M, et al. Pitting corrosion modelling of X80 steel utilized in offshore petroleum pipelines [J]. Process Saf. Environ., 2020, 141: 135
18 Wen L H, Kou H C, Li J S, et al. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy [J]. Intermetallics, 2009, 17: 266
19 Zhu Z G, Ma K H, Yang X, et al. Annealing effect on the phase stability and mechanical properties of (FeNiCrMn)(100-x)Cox high entropy alloys [J]. J. Alloy. Compd., 2017, 695: 2945
20 Lin C M, Tsai H L. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy [J]. Intermetallics, 2011, 19: 288
21 Ye Q F, Feng K, Li Z G, et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating [J]. Appl. Surf. Sci., 2017, 396: 1420
22 Yen C C, Lu H N, Tsai M H, et al. Corrosion mechanism of annealed equiatomic AlCoCrFeNi tri-phase high-entropy alloy in 0.5 M H2SO4 aerated aqueous solution [J]. Corros. Sci., 2019, 157: 462
23 Yang J, Wu J, Zhang C Y, et al. Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution [J]. J. Alloy. Compd., 2020, 819: 152943
24 Gwalani B, Choudhuri D, Liu K M, et al. Interplay between single phase solid solution strengthening and multi-phase strengthening in the same high entropy alloy [J]. Mater. Sci. Eng., 2020, 771A: 138620
25 Quiambao K F, McDonnell S J, Schreiber D K, et al. Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions [J]. Acta Mater., 2019, 164: 362
26 Zhu M, Zhang Q, Zhao B Z, et al. Effect of potential on the characteristics of passive film on a CoCrFeMnNi high-entropy alloy in carbonate/bicarbonate solution [J]. J. Mater. Eng. Perform., 2021, 30: 918
27 Parkins R N. Mechanistic aspects of intergranular stress corrosion cracking of ferritic steels [J]. Corrosion, 1996, 52: 363
28 Yang Y, Cheng Y F. Passivity degradation and photocorrosion of X52 carbon steel under visible light illumination in concentrated carbonate/bicarbonate solutions [J]. Corros. Sci., 2020, 172: 108727
29 Song L F, Liu Z Y, Li X G, et al. Characteristics of hydrogen embrittlement in high-pH stress corrosion cracking of X100 pipeline steel in carbonate/bicarbonate solution [J]. Constr. Build. Mater., 2020, 263: 120124
30 Fu A Q, Cheng Y F. Electrochemical polarization behavior of X70 steel in thin carbonate/bicarbonate solution layers trapped under a disbonded coating and its implication on pipeline SCC [J]. Corros. Sci., 2010, 52: 2511
31 Zhu M, Zhao B Z, Yuan Y F, et al. Study on corrosion behavior and mechanism of CoCrFeMnNi HEA interfered by AC current in simulated alkaline soil environment [J]. J. Electroanal. Chem., 2021, 882: 115026
32 Ran D, Meng H M, Liu X, et al. Effect of pH on corrosion behavior of 14Cr12Ni3WMoV stainless steel in chlorine-containing solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 51
32 冉斗, 孟惠民, 刘星等. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 51
33 Zhao Y, Liang P, Shi Y H, et al. Comparison of passive films on X100 and X80 pipeline steels in NaHCO3 solution [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 455
33 赵阳, 梁平, 史艳华等. NaHCO3溶液中X100和X80管线钢钝化膜性能比较 [J]. 中国腐蚀与防护学报, 2013, 33: 455
34 Heine B, Kirchheim R. Dissolution rates of iron and chromium and FeCr alloys in the passive state [J]. Corros. Sci., 1990, 31: 533
35 Qi K, Li R F, Wang G J, et al. Microstructure and corrosion properties of laser-welded SAF 2507 super duplex stainless steel joints [J]. J. Mater. Eng. Perform., 2019, 28: 287
36 Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen induced cracking [J]. Int. J. Hydrog. Energy, 2009, 34: 9879
37 Wang Y, Jin J S, Zhang M, et al. Effect of the grain size on the corrosion behavior of CoCrFeMnNi HEAs in a 0.5 M H2SO4 solution [J]. J. Alloy. Compd., 2021, 858: 157712
38 Wang T, Wan Z P, Li Z, et al. Effect of heat treatment parameters on microstructure and hot workability of as-cast fine grain ingot of GH4720Li alloy [J]. Acta Metall. Sin., 2020, 56: 182
38 王涛, 万志鹏, 李钊等. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响 [J]. 金属学报, 2020, 56: 182
39 Chumlyakov Y I, Kireeva I V, Korotaev A D, et al. Mechanisms of plastic deformation, hardening, and fracture in single crystals of nitrogen-containing austenitic stainless steel [J]. Russ. Phys. J., 1996, 39: 189
40 Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state—I. One state variable besides electrode potential [J]. Electrochim. Acta, 1990, 35: 831
41 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of m-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
41 栾浩, 孟凡帝, 刘莉等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
42 Wang W R, Wang J Q, Sun Z H, et al. Effect of Mo and aging temperature on corrosion behavior of (CoCrFeNi)100-xMox high-entropy alloys [J]. J. Alloy. Compd., 2020, 812: 152139
43 Shi K Y, Wu W J, Zhang Y, et al. Electrochemical properties of Nb coating on TC4 substrate in simulated body solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 71
43 史昆玉, 吴伟进, 张毅等. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 71
44 Luo H, Zou S W, Chen Y H, et al. Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution [J]. Corros. Sci., 2020, 163: 108287
45 Ahn S, Kwon H, Macdonald D D. Role of chloride ion in passivity breakdown on iron and nickel [J]. J. Electrochem. Soc., 2005, 152: B482
46 Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution [J]. Corros. Sci., 2018, 134: 131
47 Zhang Y S, Zhu X M. Electrochemical polarization and passive film analysis of austenitic Fe-Mn-Al steels in aqueous solutions [J]. Corros. Sci., 1999, 41: 1817
48 Lu Y S, Lu C W, Lin Y T, et al. Corrosion behavior and passive film characterization of Fe50Mn30Co10Cr10 dual-phase high-entropy alloy in sulfuric acid solution [J]. J. Electrochem. Soc., 2020, 167: 081506
49 Shi Y Z, Collins L, Balke N, et al. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution [J]. Appl. Surf. Sci., 2018, 439: 533
50 Okamoto G. Passive film of 18-8 stainless steel structure and its function [J]. Corros. Sci., 1973, 13: 471
51 Li Y, Cheng Y F. Passive film growth on carbon steel and its nanoscale features at various passivating potentials [J]. Appl. Surf. Sci., 2017, 396: 144
52 Zhou J L, Li X G, Du C W, et al. Passivation process of X80 pipeline steel in bicarbonate solutions [J]. Int. J. Miner. Metall. Mater., 2011, 18: 178
53 Li D G, Zhu J W, Zheng M S, et al. Photo-electrochemical characterization of passive film formed on X80 pipeline steel [J]. Acta Metall. Sin., 2008, 44: 739
53 李党国, 朱杰武, 郑茂盛等. X80管线钢钝化膜的光电化学性能 [J]. 金属学报, 2008, 44: 739
54 Huang T, Xu C X, Yang L J, et al. Effect of Zr addition on microstructure and corrosion behavior of Mg-3Zn-1Y alloys [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 219
[1] 于帅先, 吴亚军, 武海生, 吴量, 麻彦龙, 邓盛卫, 孙立东. 钛酸酯改性硅烷涂层优化及其对5056铝箔耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 378-386.
[2] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[3] 李平. X60管线钢在模拟潮差区初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 338-344.
[4] 辛叶春, 徐伟, 赵东杨, 张波. 超细层片结构Al-4%Cu合金的点蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
[5] 代卫丽, 王景行, 罗帅, 杜宁, 刘凡, 胥立栋, 张俊, 宋月红, 刘彦峰. AM60镁合金超疏水表面制备及防腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[6] 李旭嘉, 惠红海, 赵君文, 巫国强, 戴光泽. 多壁碳纳米管含量对无铬锌铝涂层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[7] 张恒康, 黄峰, 徐云峰, 袁玮, 邱耀, 刘静. FeCrMn1.3NiAlx高熵合金显微组织演变及电化学钝化行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 218-226.
[8] 刘永强, 刘光明, 范文学, 甘鸿禹, 唐荣茂, 师超. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[9] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[10] 朱延山, 张继明, 武凤娟, 曲锦波. X65抗酸管线钢中非金属夹杂物和氢致开裂裂纹的分析及预测[J]. 中国腐蚀与防护学报, 2022, 42(1): 169-174.
[11] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[12] 程琪栋, 王燕华. 表面划痕对304不锈钢液滴腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[13] 张文丽, 张振龙, 吴兆亮, 韩思柯, 崔中雨. 温度对316L不锈钢在油田污水中点蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[14] 李鸿瑾, 王歧山, 廖子涵, 孙祥锐, 孙晖, 张新阳, 陈旭. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[15] 雷哲缘, 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对2002双相不锈钢点蚀萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.