|
|
CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究 |
赵宝珠, 朱敏( ), 袁永锋, 郭绍义, 尹思敏 |
浙江理工大学机械与自动控制学院 杭州 310018 |
|
Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution |
ZHAO Baozhu, ZHU Min( ), YUAN Yongfeng, GUO Shaoyi, YIN Simin |
School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China |
引用本文:
赵宝珠, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
Baozhu ZHAO,
Min ZHU,
Yongfeng YUAN,
Shaoyi GUO,
Simin YIN.
Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 425-434.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2021.161
或
https://www.jcscp.org/CN/Y2022/V42/I3/425
|
1 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
2 |
Xiang C, Wang J Z, Fu H M, et al. Corrosion behavior of several high-entropy alloys in high temperature high pressure water [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 107
|
2 |
向超, 王家贞, 付华萌等. 几种高熵合金在核电高温高压水中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2016, 36: 107
|
3 |
He J Y, Zhu C, Zhou D Q, et al. Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures [J]. Intermetallics, 2014, 55: 9
|
4 |
Zhu M, Yao L J, Liu Y Q, et al. Microstructure evolution and mechanical properties of a novel CrNbTiZrAlx (0.25≤x≤1.25) eutectic refractory high-entropy alloy [J]. Mater. Lett., 2020, 272: 127869
|
5 |
Jayaraj J, Thinaharan C, Ningshen S, et al. Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium [J]. Intermetallics, 2017, 89: 123
|
6 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
|
7 |
Liu T K, Wu Z, Stoica A D, et al. Twinning-mediated work hardening and texture evolution in CrCoFeMnNi high entropy alloys at cryogenic temperature [J]. Mater. Des., 2017, 131: 419
|
8 |
Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
|
9 |
Li R D, Niu P D, Yuan T C, et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. J. Alloy.Compd., 2018, 746: 125
|
10 |
Chew Y, Bi G J, Zhu Z G, et al. Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy [J]. Mater. Sci. Eng., 2019, 744A: 137
|
11 |
Jo M C, Lee S G, Sohn S S, et al. Effects of coiling temperature and pipe-forming strain on yield strength variation after ERW pipe forming of API X70 and X80 linepipe steels [J]. Mater. Sci. Eng., 2017, 682A: 304
|
12 |
Sha Q Y, Li D H. Microstructure, mechanical properties and hydrogen induced cracking susceptibility of X80 pipeline steel with reduced Mn content [J]. Mater. Sci. Eng., 2013, 585A: 214
|
13 |
Han S Y, Sohn S S, Shin S Y, et al. Effects of microstructure and yield ratio on strain hardening and Bauschinger effect in two API X80 linepipe steels [J]. Mater. Sci. Eng., 2012, 551A: 192
|
14 |
Arora K S, Pandu S R, Shajan N, et al. Microstructure and impact toughness of reheated coarse grain heat affected zones of API X65 and API X80 linepipe steels [J]. Int. J. Press. Vess. Pip., 2018, 163: 36
|
15 |
Li C Y, Chen X, He C, et al. Alternating current induced corrosion of buried metal pipeline: a review [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 139
|
15 |
李承媛, 陈旭, 何川等. 埋地金属管道交流电腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 139
|
16 |
Li Z, Wan H X, Song D D, et al. Corrosion behavior of X80 pipeline steel in the presence of Brevibacterium halotolerans in Beijing soil [J]. Bioelectrochemistry, 2019, 126: 121
|
17 |
Arzaghi E, Chia B H, Abaei M M, et al. Pitting corrosion modelling of X80 steel utilized in offshore petroleum pipelines [J]. Process Saf. Environ., 2020, 141: 135
|
18 |
Wen L H, Kou H C, Li J S, et al. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy [J]. Intermetallics, 2009, 17: 266
|
19 |
Zhu Z G, Ma K H, Yang X, et al. Annealing effect on the phase stability and mechanical properties of (FeNiCrMn)(100-x)Cox high entropy alloys [J]. J. Alloy. Compd., 2017, 695: 2945
|
20 |
Lin C M, Tsai H L. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy [J]. Intermetallics, 2011, 19: 288
|
21 |
Ye Q F, Feng K, Li Z G, et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating [J]. Appl. Surf. Sci., 2017, 396: 1420
|
22 |
Yen C C, Lu H N, Tsai M H, et al. Corrosion mechanism of annealed equiatomic AlCoCrFeNi tri-phase high-entropy alloy in 0.5 M H2SO4 aerated aqueous solution [J]. Corros. Sci., 2019, 157: 462
|
23 |
Yang J, Wu J, Zhang C Y, et al. Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution [J]. J. Alloy. Compd., 2020, 819: 152943
|
24 |
Gwalani B, Choudhuri D, Liu K M, et al. Interplay between single phase solid solution strengthening and multi-phase strengthening in the same high entropy alloy [J]. Mater. Sci. Eng., 2020, 771A: 138620
|
25 |
Quiambao K F, McDonnell S J, Schreiber D K, et al. Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions [J]. Acta Mater., 2019, 164: 362
|
26 |
Zhu M, Zhang Q, Zhao B Z, et al. Effect of potential on the characteristics of passive film on a CoCrFeMnNi high-entropy alloy in carbonate/bicarbonate solution [J]. J. Mater. Eng. Perform., 2021, 30: 918
|
27 |
Parkins R N. Mechanistic aspects of intergranular stress corrosion cracking of ferritic steels [J]. Corrosion, 1996, 52: 363
|
28 |
Yang Y, Cheng Y F. Passivity degradation and photocorrosion of X52 carbon steel under visible light illumination in concentrated carbonate/bicarbonate solutions [J]. Corros. Sci., 2020, 172: 108727
|
29 |
Song L F, Liu Z Y, Li X G, et al. Characteristics of hydrogen embrittlement in high-pH stress corrosion cracking of X100 pipeline steel in carbonate/bicarbonate solution [J]. Constr. Build. Mater., 2020, 263: 120124
|
30 |
Fu A Q, Cheng Y F. Electrochemical polarization behavior of X70 steel in thin carbonate/bicarbonate solution layers trapped under a disbonded coating and its implication on pipeline SCC [J]. Corros. Sci., 2010, 52: 2511
|
31 |
Zhu M, Zhao B Z, Yuan Y F, et al. Study on corrosion behavior and mechanism of CoCrFeMnNi HEA interfered by AC current in simulated alkaline soil environment [J]. J. Electroanal. Chem., 2021, 882: 115026
|
32 |
Ran D, Meng H M, Liu X, et al. Effect of pH on corrosion behavior of 14Cr12Ni3WMoV stainless steel in chlorine-containing solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 51
|
32 |
冉斗, 孟惠民, 刘星等. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 51
|
33 |
Zhao Y, Liang P, Shi Y H, et al. Comparison of passive films on X100 and X80 pipeline steels in NaHCO3 solution [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 455
|
33 |
赵阳, 梁平, 史艳华等. NaHCO3溶液中X100和X80管线钢钝化膜性能比较 [J]. 中国腐蚀与防护学报, 2013, 33: 455
|
34 |
Heine B, Kirchheim R. Dissolution rates of iron and chromium and FeCr alloys in the passive state [J]. Corros. Sci., 1990, 31: 533
|
35 |
Qi K, Li R F, Wang G J, et al. Microstructure and corrosion properties of laser-welded SAF 2507 super duplex stainless steel joints [J]. J. Mater. Eng. Perform., 2019, 28: 287
|
36 |
Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen induced cracking [J]. Int. J. Hydrog. Energy, 2009, 34: 9879
|
37 |
Wang Y, Jin J S, Zhang M, et al. Effect of the grain size on the corrosion behavior of CoCrFeMnNi HEAs in a 0.5 M H2SO4 solution [J]. J. Alloy. Compd., 2021, 858: 157712
|
38 |
Wang T, Wan Z P, Li Z, et al. Effect of heat treatment parameters on microstructure and hot workability of as-cast fine grain ingot of GH4720Li alloy [J]. Acta Metall. Sin., 2020, 56: 182
|
38 |
王涛, 万志鹏, 李钊等. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响 [J]. 金属学报, 2020, 56: 182
|
39 |
Chumlyakov Y I, Kireeva I V, Korotaev A D, et al. Mechanisms of plastic deformation, hardening, and fracture in single crystals of nitrogen-containing austenitic stainless steel [J]. Russ. Phys. J., 1996, 39: 189
|
40 |
Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state—I. One state variable besides electrode potential [J]. Electrochim. Acta, 1990, 35: 831
|
41 |
Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of m-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
|
41 |
栾浩, 孟凡帝, 刘莉等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
|
42 |
Wang W R, Wang J Q, Sun Z H, et al. Effect of Mo and aging temperature on corrosion behavior of (CoCrFeNi)100-xMox high-entropy alloys [J]. J. Alloy. Compd., 2020, 812: 152139
|
43 |
Shi K Y, Wu W J, Zhang Y, et al. Electrochemical properties of Nb coating on TC4 substrate in simulated body solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 71
|
43 |
史昆玉, 吴伟进, 张毅等. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 71
|
44 |
Luo H, Zou S W, Chen Y H, et al. Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution [J]. Corros. Sci., 2020, 163: 108287
|
45 |
Ahn S, Kwon H, Macdonald D D. Role of chloride ion in passivity breakdown on iron and nickel [J]. J. Electrochem. Soc., 2005, 152: B482
|
46 |
Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution [J]. Corros. Sci., 2018, 134: 131
|
47 |
Zhang Y S, Zhu X M. Electrochemical polarization and passive film analysis of austenitic Fe-Mn-Al steels in aqueous solutions [J]. Corros. Sci., 1999, 41: 1817
|
48 |
Lu Y S, Lu C W, Lin Y T, et al. Corrosion behavior and passive film characterization of Fe50Mn30Co10Cr10 dual-phase high-entropy alloy in sulfuric acid solution [J]. J. Electrochem. Soc., 2020, 167: 081506
|
49 |
Shi Y Z, Collins L, Balke N, et al. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution [J]. Appl. Surf. Sci., 2018, 439: 533
|
50 |
Okamoto G. Passive film of 18-8 stainless steel structure and its function [J]. Corros. Sci., 1973, 13: 471
|
51 |
Li Y, Cheng Y F. Passive film growth on carbon steel and its nanoscale features at various passivating potentials [J]. Appl. Surf. Sci., 2017, 396: 144
|
52 |
Zhou J L, Li X G, Du C W, et al. Passivation process of X80 pipeline steel in bicarbonate solutions [J]. Int. J. Miner. Metall. Mater., 2011, 18: 178
|
53 |
Li D G, Zhu J W, Zheng M S, et al. Photo-electrochemical characterization of passive film formed on X80 pipeline steel [J]. Acta Metall. Sin., 2008, 44: 739
|
53 |
李党国, 朱杰武, 郑茂盛等. X80管线钢钝化膜的光电化学性能 [J]. 金属学报, 2008, 44: 739
|
54 |
Huang T, Xu C X, Yang L J, et al. Effect of Zr addition on microstructure and corrosion behavior of Mg-3Zn-1Y alloys [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 219
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|