Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1200-1212     CSTR: 32134.14.1005.4537.2023.322      DOI: 10.11902/1005.4537.2023.322
  研究报告 本期目录 | 过刊浏览 |
含杂CO2 封存条件下13CrN80套管钢腐蚀规律研究
刘广胜1,2, 王卫军1,2, 周佩1,2, 谭金颢3,4, 丁宏鑫3,4, 张伟3,4, 向勇3,4()
1 长庆油田分公司油气工艺研究院 西安 710018
2 低渗透油气田国家工程实验室 西安 710018
3 中国石油大学(北京)机械与储运工程学院 北京 102249
4 中国石油大学(北京) 低碳能源装备材料失效与保护实验室 北京 102249
Corrosion Behavior of Casing Steels 13Cr and N80 During Sequestration in an Impure Carbon Dioxide Environment
LIU Guangsheng1,2, WANG Weijun1,2, ZHOU Pei1,2, TAN Jinhao3,4, DING Hongxin3,4, ZHANG Wei3,4, XIANG Yong3,4()
1 Changqing Oilfield Company Oil and Gas Technology Research Institute, Xi'an 710018, China
2 National Engineering Laboratory of Low Permeability Oil and Gas Fields, Xi'an 710018, China
3 School of Mechanical and Storage Engineering, China University of Petroleum (Beijing), Beijing 102249, China
4 Laboratory for Materials Failure and Protection of Low Carbon Energy Equipment, China University of Petroleum (Beijing), Beijing 102249, China
引用本文:

刘广胜, 王卫军, 周佩, 谭金颢, 丁宏鑫, 张伟, 向勇. 含杂CO2 封存条件下13CrN80套管钢腐蚀规律研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.
Guangsheng LIU, Weijun WANG, Pei ZHOU, Jinhao TAN, Hongxin DING, Wei ZHANG, Yong XIANG. Corrosion Behavior of Casing Steels 13Cr and N80 During Sequestration in an Impure Carbon Dioxide Environment[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1200-1212.

全文: PDF(28197 KB)   HTML
摘要: 

井筒屏障金属材料腐蚀失效是影响碳封存安全性的关键问题。针对高温高压含杂CO2封存环境下井筒套管腐蚀规律问题,利用高温高压反应釜模拟封存条件下的井下工况,分别研究了N80及13Cr钢在不同压力、应力条件下含杂质(SO2、NO2和O2)的超临界CO2富水相中的腐蚀规律。本研究利用失重法得到腐蚀速率,并利用扫描电镜(SEM)、X射线衍射仪(XRD)和X射线光电子能谱仪(XPS)等对产物膜进行了表征分析。结果表明,N80钢的均匀腐蚀与点蚀速率均随着压力的升高而增大;压力对13Cr钢的均匀腐蚀影响不明显,但在压力为20 MPa时出现严重的点蚀现象;给试样施加拉应力后,随着应力的增加,N80及13Cr钢的腐蚀产物层均出现了不同程度的破损,但是基体表面未观察到裂纹生成。

关键词 超临界CO2腐蚀规律应力腐蚀CO2封存    
Abstract

Corrosion of metallic materials, used as wellbore wall is a critical issue that influences the safety of carbon sequestration. This work focuses on understanding the corrosion behavior of casing steels in high-temperature and high-pressure CO2 storage environments. Herein, the corrosion behavior of two steels N80 and 13Cr in supercritical CO2-rich water phases containing impurities (SO2, NO2, and O2) was investigated via a high-temperature and high-pressure reactor by various pressure and stress conditions, aiming to simulate the real service conditions of carbon sequestration. The corrosion rate of steels was determined with mass-loss method, while the films formed on the steel surface were characterized by means of scanning electron microscopy (SEM), X-ray diffractometry (XRD), and X-ray photoelectron spectroscopy (XPS). The results indicated that increasing the pressure led to higher rates of uniform corrosion and pitting corrosion for N80 steel. However, the pressure had inapparent effect on uniform corrosion of 13Cr steel, although severe pitting corrosion was observed by pressure of 20 MPa. Furthermore, the applied tensile stress could induce damage of the corrosion product scales on both N80 and 13Cr steels to certain extent, nevertheless, no cracks were observed on the surface of the steel substrate.

Key wordssupercritical CO2    corrosion process    stress corrosion    CO2 storage
收稿日期: 2023-10-12      32134.14.1005.4537.2023.322
ZTFLH:  TE980  
基金资助:国家自然科学基金(52271082);北京市自然科学基金(2222074)
通讯作者: 向勇,E-mail:xiangy@cup.edu.cn,研究方向为碳捕集、利用与封存,腐蚀与防护
Corresponding author: XIANG Yong, E-mail: xiangy@cup.edu.cn
作者简介: 刘广胜,男,1966年生,本科,钻井工程高级工程师、长庆油田油气工艺研究院院总工程师
MaterialCSiMnPSAlCrNiVTiCuMoCo
N800.350.321.550.020.0150.0140.110.130.150.010.030.010.08
13Cr0.220.170.550.0160.008-12.450.250.02-0.20.14-
表1  实验材料化学成分
图1  高温高压反应釜装置图
Material

Temperature

oC

Pressure

MPa

Gas compositionEnvironment

Time

h

N80

12010CO2 + 0.1‰ SO2 + 0.1‰ NO2 + 0.1‰ O2Simulation of groundwater phase72
15
20

13Cr

10
15
20
表2  压力组实验方案
Material

Temperature

Pressure

MPa

Gas compositionEnvironment

Loading

stress

Time

h

N8012020CO2 + 0.1‰ SO2 + 0.1‰ NO2 + 0.1‰ O2Simulation of groundwater phase072
25% σs
50% σs
75% σs
13Cr0
25% σs
50% σs
75% σs
表3  应力组实验方案
图2  120℃、不同压力条件下N80及13Cr钢在富水相中腐蚀72 h后的腐蚀速率
图3  120℃、不同压力条件下N80及13Cr钢在富水相中腐蚀72 h后腐蚀产物膜的表面形貌
图4  120℃、不同压力条件下N80及13Cr钢在富水相中腐蚀72 h后的截面形貌
图5  120℃、不同压力条件下N80及13Cr钢在富水相中腐蚀72 h后的点蚀速率
图6  120℃、不同压力条件下N80及13Cr钢在富水相中腐蚀72 h后的3D形貌
图7  120℃、不同压力条件下N80钢在富水相中腐蚀72 h后的XRD
图8  120℃、不同压力条件下13Cr钢在富水相中腐蚀72 h后的XRD
图9  120℃、不同压力条件下13Cr钢在富水相中腐蚀72 h后腐蚀产物膜中Cr、Fe、O的XPS谱
Element10 MPa15 MPa20 MPa
Binding energy / eVPeakBinding energy / eVPeakBinding energy / eVPeak
Cr 2p577.1Cr(OH)3577.1Cr(OH)3577.1Cr(OH)3
O 1s531.4FeCO3531.4FeCO3531.4FeCO3
Fe 2p529.7FeOOH--529.7FeOOH
531.7Cr(OH)3531.7Cr(OH)3531.7Cr(OH)3
710.2FeCO3710.2FeCO3710.2FeCO3
711.5FeOOH711.5FeOOH711.5FeOOH
表4  120℃、不同压力条件下13Cr钢在富水相中腐蚀72 h后腐蚀产物膜的结合能
图10  120℃、20 MPa不同加载应力条件下N80及13Cr钢在富水相中腐蚀72 h的表面形貌
图11  120℃、20 MPa不同加载应力条件下N80及13Cr钢在富水相中腐蚀72 h去除产物膜后的表面形貌
图12  120℃、20 MPa不同加载应力条件下N80钢在富水相中腐蚀72 h后的3D形貌
1 Leeson D, Mac Dowell N, Shah N, et al. A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources [J]. Int. J. Greenh. Gas Control, 2017, 61: 71
2 Choi Y S, Nešić S. Determining the corrosive potential of CO2 transport pipeline in high pCO2–water environments [J]. Int. J. Greenh. Gas Control, 2011, 5: 788
3 Barker R, Hua Y, Neville A. Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS)-a review [J]. Int. Mater. Rev., 2017, 62: 1
4 Tang Y, Guo X P, Zhang G A. Corrosion behaviour of X65 carbon steel in supercritical-CO2 containing H2O and O2 in carbon capture and storage (CCS) technology [J]. Corros. Sci., 2017, 118: 118
5 Zhang G A, Liu D, Li Y Z, et al. Corrosion behaviour of N80 carbon steel in formation water under dynamic supercritical CO2 condition [J]. Corros. Sci., 2017, 120: 107
6 Laumb J D, Glazewski K A, Hamling J A, et al. Corrosion and failure assessment for CO2 EOR and associated storage in the Weyburn Field [J]. Energy Procedia, 2017, 114: 5173
7 Talebian S H, Masoudi R, Tan I M, et al. Foam assisted CO2-EOR; concepts, challenges and applications [A]. Proceedings of the SPE 165280. SPE Enhanced Oil Recovery Conference [C]. Kuala Lumpur, Malaysia: SPE, 2013
8 Choi Y S, Nešic S. Corrosion behavior of carbon steel in supercritical CO2-water environments [A]. NACE Corrosion [C]. Atlanta, Georgia: NACE, 2009
9 Chen C F, Lu M X, Sun D B, et al. Effect of chromium on the pitting resistance of oil tube steel in a carbon dioxide corrosion system [J]. Corrosion, 2005, 61: 594
10 Wang B, Xu L N, Zhu J Y, et al. Observation and analysis of pseudopassive film on 6.5%Cr steel in CO2 corrosion environment [J]. Corros. Sci., 2016, 111: 711
11 Li W, Xu L N, Qiao L J, et al. Effect of free Cr content on corrosion behavior of 3Cr steels in a CO2 environment [J]. Appl. Surf. Sci., 2017, 425: 32
12 Guo S Q, Xu L N, Zhang L, et al. Characterization of corrosion scale formed on 3Cr steel in CO2-saturated formation water [J]. Corros. Sci., 2016, 110: 123
13 Xu L N, Wang B, Zhu J Y, et al. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment [J]. Appl. Surf. Sci., 2016, 379: 39
14 Zhu J Y, Xu L N, Lu M X, et al. Essential criterion for evaluating the corrosion resistance of 3Cr steel in CO2 environments: prepassivation [J]. Corros. Sci., 2015, 93: 336
15 Wei L, Gao K W. Understanding the general and localized corrosion mechanisms of Cr-containing steels in supercritical CO2-saturated aqueous environments [J]. J. Alloy. Compd., 2019, 792: 328
16 Xing X J, Xie R J, Ma Y, et al. Corrosion behaviour of 13Cr in supercritical CO2 Environment [J]. Surf. Technol., 2016, 45(5): 79
16 邢希金, 谢仁军, 马 岩 等. 超临界CO2环境13Cr材质腐蚀行为研究 [J]. 表面技术, 2016, 45(5): 79
17 Cui Z D, Wu S L, Li C F, et al. Corrosion behavior of oil tube steels under conditions of multiphase flow saturated with super-critical carbon dioxide [J]. Mater. Lett., 2004, 58: 1035
18 Cui Z D, Wu S L, Zhu S L, et al. Study on corrosion properties of pipelines in simulated produced water saturated with supercritical CO2 [J]. Appl. Surf. Sci., 2006, 252: 2368
19 Lin G F, Zheng M, Bai Z L, et al. Effect of temperature and pressure on the morphology of carbon dioxide corrosion scales [J]. Corrosion, 2006, 62: 501
20 Zhang Y C, Pang X L, Qu S P, et al. Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition [J]. Corros. Sci., 2012, 59: 186
21 Choi Y S, Farelas F, Nešić S, et al. Corrosion behavior of deep water oil production tubing material under supercritical CO2 environment: Part 1. effect of pressure and temperature [J]. Corrosion, 2014, 70: 38
22 Suhor M F, Mohamed M F, Nor A M, et al. Corrosion of mild steel in high CO2 environment: Effect of the FeCO3 layer [A]. NACE-International Corrosion Conference Series [C]. Salt Lake City, Utah: NACE, 2012
23 Xiang Y, Song C C, Li C, et al. Characterization of 13Cr steel corrosion in simulated EOR-CCUS environment with flue gas impurities [J]. Process Saf. Environ. Prot., 2020, 140: 124
24 Hua Y, Barker R, Neville A. The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO2 environments [J]. Appl. Surf. Sci., 2015, 356: 499
25 Sun J B, Sun C, Wang Y. Effects of O2 and SO2 on water chemistry characteristics and corrosion behavior of X70 pipeline steel in supercritical CO2 transport system [J]. Ind. Eng. Chem. Res., 2018, 57: 2365
26 Sun C, Sun J B, Wang Y, et al. Synergistic effect of O2, H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. Corros. Sci., 2016, 107: 193
27 Li C, Xiang Y, Wang R T, et al. Exploring the influence of flue gas impurities on the electrochemical corrosion mechanism of X80 steel in a supercritical CO2-saturated aqueous environment [J]. Corros. Sci., 2023, 211: 110899
28 Li C, Xiang Y, Li W G. Initial corrosion mechanism for API 5L X80 steel in CO2/SO2-saturated aqueous solution within a CCUS system: Inhibition effect of SO2 impurity [J]. Electrochim. Acta, 2019, 321: 134663
29 Sun C, Wang Y, Sun J B, et al. Effect of impurity on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. J. Supercrit Fluids, 2016, 116: 70
30 Hua Y, Shamsa A, Barker R, et al. Protectiveness, morphology and composition of corrosion products formed on carbon steel in the presence of Cl-, Ca2+ and Mg2+ in high pressure CO2 environments [J]. Appl. Surf. Sci., 2018, 455: 667
31 Xiang Y, Xu M H, Choi Y S. State-of-the-art overview of pipeline steel corrosion in impure dense CO2 for CCS transportation: mechanisms and models [J]. Corros. Eng. Sci. Technol., 2017, 52: 485
32 Xu Y Z. Research progress of stress corrosion [J]. Petrochem. Saf. Environ. Prot. Technol., 2021, 37(1): 26
32 徐亚洲. 应力腐蚀研究进展 [J]. 石油化工安全环保技术, 2021, 37(1): 26
33 Yu J, Zhang D P, Pan R S, et al. Electrochemical noise of stress corrosion cracking of P110 tubing steel in sulphur-containing downhole annular fluid [J]. Acta Metall. Sin., 2018, 54: 1399
doi: 10.11900/0412.1961.2018.00033
33 余 军, 张德平, 潘若生 等. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征 [J]. 金属学报, 2018, 54: 1399
34 Zhao X H, Liu J L, Zeng R H, et al. Effect of Cl-concentration on the stress corrosion sensitivity of martensitic stainless steel in saturated CO2 solution [J]. Mater. Prot., 2021, 54(1): 36
34 赵雪会, 刘君林, 曾瑞华 等. 饱和CO2溶液中Cl-浓度对马氏体不锈钢应力腐蚀敏感性的影响 [J]. 材料保护, 2021, 54(1): 36
35 Sun C, Yan X L, Sun J B, et al. Unraveling the effect of O2, NO2 and SO2 impurities on the stress corrosion behavior of X65 steel in water-saturated supercritical CO2 streams [J]. Corros. Sci., 2022, 209: 110729
36 Zeng Y M, Li K Y. Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines [J]. Corros. Sci., 2020, 165: 108404
37 Sandana D, Dale M, Charles E A, et al. Transport of gaseous and dense carbon dioxide in pipelines: is there an internal stress corrosion cracking risk? [A]. NACE-International Corrosion Conference Series [C]. Orlando, Florida: NACE, 2013
38 Onyebuchi V E, Kolios A, Hanak D P, et al. A systematic review of key challenges of CO2 transport via pipelines [J]. Renew. Sust. Energy Rev., 2018, 81: 2563
39 Craig B. Should supercritical CO2 pipelines comply with ANSI/NACE MR0175/ISO 15156? [J]. Mater. Perform., 2014, 53(12): 60
40 Spycher N, Pruess K, Ennis-King J. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar [J]. Geochim. Cosmochim. Acta, 2003, 67: 3015
41 Hinds G, Wickström L, Mingard K, et al. Impact of surface condition on sulphide stress corrosion cracking of 316L stainless steel [J]. Corros. Sci., 2013, 71: 43
42 ASTM. Standard practice for preparing, cleaning, and evaluating corrosion test specimens [S]. West Conshohocken: American Society for Testing and Materials, 2003
43 ASTM. Standard guide for examination and evaluation of pitting corrosion [S]. West Conshohocken: ASTM International, 2005
44 National Energy Administration. Water quality specification and practice for analysis of oilfield injecting water in clastic reservoirs [S]. Beijing: Petroleum Industry Press, 2022
44 国家能源局. 碎屑岩油藏注水水质指标技术要求及分析方法 [S]. 北京: 石油工业出版社, 2022
45 Macdonald D D. The point defect model for the passive state [J]. J. Electrochem. Soc., 1992, 139: 3434
46 Shuttleworth D. Preparation of metal-polymer dispersions by plasma techniques. An ESCA investigation [J]. J. Phys. Chem., 1980, 84: 1629
47 Heuer J K, Stubbins J F. An XPS characterization of FeCO3 films from CO2 corrosion [J]. Corros. Sci., 1999, 41(7): 1231
48 McIntyre N S, Zetaruk D G. X-ray photoelectron spectroscopic studies of iron oxides [J]. Anal. Chem., 1977, 49: 1521
49 Tan B J, Klabunde K J, Sherwood P M A. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina [J]. Chem. Mater., 1990, 2: 186
50 Lin X Q, Liu W, Wu F, et al. Effect of O2 on corrosion of 3Cr steel in high temperature and high pressure CO2–O2 environment [J]. Appl. Surf. Sci., 2015, 329: 104
[1] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[2] 赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[3] 刘久云, 董立谨, 张言, 王勤英, 刘丽. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[4] 胡丽华, 衣华磊, 杨维健, 孙冲, 孙建波. 水含量对超临界CO2 输送管道腐蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584.
[5] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[6] 岑远遥, 廖光萌, 朱玉琴, 赵方超, 刘聪, 何建新, 周堃. 基于布拉格光纤光栅的铝合金应力腐蚀裂纹扩展监测技术[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[7] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[8] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[9] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[10] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[11] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[12] 李柯萱, 宋龙飞, 李晓荣. pH值对X100管线钢在CO32-/HCO3-溶液中的电化学与应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.
[13] 刘宇桐, 陈震宇, 朱忠亮, 冯瑞, 包汉生, 张乃强. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[14] 刘保平, 张志明, 王俭秋, 韩恩厚, 柯伟. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[15] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.