Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 797-806     CSTR: 32134.14.1005.4537.2023.236      DOI: 10.11902/1005.4537.2023.236
  研究报告 本期目录 | 过刊浏览 |
S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用
耿真真1, 张钰柱2(), 杜小将3, 吴汉辉1
1.重庆化工职业学院建筑工程学院 重庆 400020
2.重庆移通学院智能工程学院 重庆 401520
3.重庆恒晟大业建筑设计有限公司 重庆 401120
Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel
GENG Zhenzhen1, ZHANG Yuzhu2(), DU Xiaojiang3, WU Hanhui1
1. School of Architectural Engineering, Chongqing Chemical Industry Vocational College, Chongqing 400020, China
2. School of Intelligent Engineering, Chongqing College of Mobile Communications, Chongqing 401520, China
3. Chongqing Hengshengdaye Architectural Design Co., Ltd., Chongqing 401120, China
引用本文:

耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
Zhenzhen GENG, Yuzhu ZHANG, Xiaojiang DU, Hanhui WU. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 797-806.

全文: PDF(8645 KB)   HTML
摘要: 

为了研究S2-和Cl-对316L奥氏体不锈钢的耐腐蚀性能的协同破坏作用,采用电化学测试技术、扫描电子显微镜(SEM)、激光共聚焦扫描显微镜(CLSM)、能谱仪(EDS)和X射线光电子能谱仪(XPS)等方法研究了316L奥氏体不锈钢在不同S2-浓度人工海水中的腐蚀行为和钝化行为。结果表明:S2-和Cl-对316L奥氏体不锈钢的耐腐蚀性能具有协同损害作用。S2-与OH-竞争吸附抑制钝化膜生成,并且S2-参与钝化过程形成FeS和MoS2,提高钝化膜掺杂密度,降低钝化膜屏蔽性能,从而加速Cl-诱发点蚀。随着S2-浓度从0增大至100 mmol/L,溶液pH从8.2上升至12.8,导致自腐蚀电位Ecorr负移0.328 V,腐蚀电流密度Icorr增大约1倍。当S2-浓度大于0.1 mmol/L时,316L奥氏体不锈钢失去再钝化性能,当S2-浓度大于100 mmol/L时,316L奥氏体不锈钢失去钝化性能。

关键词 316L奥氏体不锈钢S2-Cl-钝化膜耐腐蚀性能协同作用    
Abstract

The synergistic effect of S2- and Cl- on corrosion resistance of 316L austenitic stainless steel in artificial seawater with different S2- concentrations were studied by using electrochemical testing techniques, SEM, CLSM, EDS, and XPS. The results showed that S2- and Cl- have synergistic damaging effects on the corrosion resistance of 316L austenitic stainless steel. S2- inhibited passivation film generation by competitive adsorption with OH-, and the participation of S2- in the passivation process is conductive to the formation of FeS and MoS2, increasing the doping density but reducing the shielding performance of the passivation film, thus accelerating pitting induced by Cl-. As the S2- concentration increased from 0 to 100 mmol/L, the solution pH was increased from 8.2 to 12.8, resulting in a negative shift of the free-corrosion potential Ecorr by 0.328 V and an increase in the corrosion current density Icorr approximately one-fold. When the S2- concentration was greater than 0.1 mmol/L, 316L austenitic stainless steel lost its repassivation performance. When the S2- concentration was greater than 100 mmol/L, 316L austenitic stainless steel lost its passivation performance.

Key words316L austenitic stainless steel    S2-    Cl-    passivation film    corrosion resistance    synergistic effect
收稿日期: 2023-08-01      32134.14.1005.4537.2023.236
ZTFLH:  TG172.5  
基金资助:中国高校产学研创新基金(2021BCC02003);重庆市教委科学技术研究项目(KJQN202302405)
通讯作者: 张钰柱,E-mail:yz_zhang@yeah.net,研究方向为金属材料成形工艺及性能
Corresponding author: ZHANG Yuzhu, E-mail: yz_zhang@yeah.net
作者简介: 耿真真,女,1985年生,硕士,讲师
图1  316L奥氏体不锈钢在不同S2-浓度人工海水中的OCP、Nyquist图、Bode图和循环动电位极化曲线

S2- concentrations

mmol·L-1

Rs

Ω·cm2

Rt

Ω·cm2

Yt

Ω-1·cm-2·s-n

nt

Rf

Ω·cm2

Yf

Ω-1·cm-2·s-n

nfχ2
025.683.01 × 1053.02 × 10-50.931.86 × 1057.81 × 10-50.861.2 × 10-3
0.125.342.33 × 1053.36 × 10-50.958.18 × 1048.82 × 10-50.931.5 × 10-3
125.761.80 × 1053.79 × 10-50.955.69 × 1049.67 × 10-50.922.0 × 10-3
1024.821.72 × 1054.11 × 10-50.944.38 × 1041.13 × 10-40.791.7 × 10-3
10024.321.39 × 1054.22 × 10-50.863.53 × 1041.22 × 10-40.861.5 × 10-3
表1  不同S2-浓度人工海水中的EIS拟合参数
S2- concentrations / mmol·L-1Icorr / μA·cm-2Ecorr / VEb / VErp / VEb-Erp / V
00.115-0.1990.310-0.1630.473
0.10.128-0.2980.331-0.1690.500
10.161-0.3720.358--
100.194-0.4260.446--
1000.250-0.527---
表2  不同S2-浓度的人工海水中循环动电位极化曲线参数
图2  不同S2-浓度的人工海水中循环极化后腐蚀形貌的CLSM图
图3  含100 mmol/L S2-的人工海水中循环动电位极化后点蚀形貌和点扫描
图4  不同S2-浓度人工海水中恒电位极化I-t曲线和恒电位极化后在人工海水中的Nyquist图、Bode图、Mott-Schottky曲线和施主浓度ND

S2- concentrations

mmol·L-1

Rs

Ω·cm2

Rt

Ω·cm2

Yt

Ω-1·cm-2·s-n

nt

Rf

Ω·cm2

Yf

Ω-1·cm-2·s-n

nfχ2
023.795.00 × 1052.80 × 10-50.947.69 × 1061.46 × 10-60.838.0 × 10-4
0.123.804.65 × 1053.00 × 10-50.936.94 × 1062.88 × 10-60.859.0 × 10-4
123.652.77 × 1053.37 × 10-50.933.55 × 1061.16 × 10-60.931.2 × 10-3
1023.882.59 × 1053.80 × 10-50.922.67 × 1061.88 × 10-50.771.4 × 10-3
10023.671.76 × 1053.91 × 10-50.949.34 × 1053.67 × 10-50.922.0 × 10-3
表3  在不同S2-浓度人工海水中恒电位极化后在人工海水中的EIS拟合参数
图5  不同S2-浓度的人工海水中恒电位极化后的微观形貌和面扫描
图6  在含100 mmol/L S2-的人工海水中恒电位极化后钝化膜的XPS谱
1 Bao M Y, Ren C Q, Zheng Y P, et al. Adaptability evaluation of 316L stainless steel based on pitting corrosion in acid gas field [J]. Mater. Rep., 2016, 30(17): 10, 35
1 鲍明昱, 任呈强, 郑云萍 等. 基于点蚀的316L不锈钢在酸性气田环境中的适应性评价 [J]. 材料导报, 2016, 30(17): 10, 35
2 Zhao G X, Huang J, Xue Y. Corrosion behavior of materials used for surface gathering and transportation pipeline in an oilfield [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 557
2 赵国仙, 黄 静, 薛 艳. 某油田地面集输管道用材腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 557
doi: 10.11902/1005.4537.2019.230
3 Hu S B, Liu R, Liu L, et al. Influence of temperature and hydrostatic pressure on the galvanic corrosion between 90/10 Cu-Ni and AISI 316L stainless steel [J]. J. Mater. Res. Technol., 2021, 13: 1402
doi: 10.1016/j.jmrt.2021.05.067
4 Xin S S, Li M C. Electrochemical corrosion characteristics of type 316L stainless steel in hot concentrated seawater [J]. Corros. Sci., 2014, 81: 96
doi: 10.1016/j.corsci.2013.12.004
5 Chang Q. Effect of deep ocean on critical pitting temperature of 316L stainless steel [D]. Harbin: Harbin Engineering University, 2016
5 常 青. 深海环境对316L不锈钢临界点蚀温度的影响 [D]. 哈尔滨: 哈尔滨工程大学, 2016
6 Al-Fozan S A, Malik A U. Effect of seawater level on corrosion behavior of different alloys [J]. Desalination, 2008, 228: 61
doi: 10.1016/j.desal.2007.08.007
7 Xin S S, Li M C. Pitting resistance of anodic passive films formed on 316L stainless steel in the concentrated artificial seawater [J]. Russ. J. Electrochem., 2014, 50: 281
doi: 10.1134/S1023193513090097
8 Zhang Z, Wu C, Wang Z P, et al. Investigation of the crevice corrosion behavior of 316L stainless steel in sulfate-reducing bacteria-inoculated artificial seawater using the wire beam electrode [J]. J. Mater. Eng. Perform., 2022, 31: 10393
doi: 10.1007/s11665-022-07023-9
9 Hou R Z, Lu S H, Chen S Q, et al. The corrosion of 316L stainless steel induced by methanocossus mariplaudis through indirect electron transfer in seawater [J]. Bioelectrochemistry, 2023, 149: 108310
doi: 10.1016/j.bioelechem.2022.108310
10 Zhang L H, Li C J, Pan L, et al. Corrosion behavior of 316L stainless steel in simulated oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 625
10 张龙华, 李长君, 潘 磊 等. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 625
doi: 10.11902/1005.4537.2020.255
11 Zhou X C, Cui Q Q, Jia J H, et al. Influence of Cl- concentration on stress corrosion cracking behavior of 316L stainless steel in alkaline NaCl/Na2S solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 526
11 周霄骋, 崔巧棋, 贾静焕 等. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 526
doi: 10.11902/1005.4537.2016.206
12 Song D D, Jia Y J, Tu X H, et al. Effect of Cl- on stress corrosion of cold deformed 316L austenitic stainless steel in H2S environment [J]. Surf. Technol., 2020, 49(3): 23
12 宋东东, 贾玉杰, 涂小慧 等. Cl-对冷变形316L奥氏体不锈钢在H2S环境下应力腐蚀的影响 [J]. 表面技术, 2020, 49(3): 23
13 Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
13 张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143
doi: 10.11902/1005.4537.2020.257
14 Gudić S, Vrsalović L, Matošin A, et al. Corrosion behavior of stainless steel in seawater in the presence of sulfide [J]. Appl. Sci., 2023, 13(7): 4366
doi: 10.3390/app13074366
15 Li S Y, Song J L, Wei H, et al. Corrosion behavior of Cu-Ti alloy in simulated S2- contaminated seawater [J]. Rare Metal Mater. Eng., 2022, 51: 895
15 李思远, 宋坚磊, 卫 欢 等. Cu-Ti合金在模拟S2-污染海水中的腐蚀行为 [J]. 稀有金属材料与工程, 2022, 51: 895
16 Hamdy A S, Sa'eh A G, Shoeib M A, et al. Evaluation of corrosion and erosion-corrosion resistances of mild steel in sulfide-containing NaCl aerated solutions [J]. Electrochim. Acta, 2007, 52: 7068
doi: 10.1016/j.electacta.2007.05.034
17 Wang Z, Feng Z, Zhang L, et al. Current application and development trend in electrochemical measurement methods for the corrosion study of stainless steels [J]. Chin. J. Eng., 2020, 42: 549
17 王 竹, 冯 喆, 张 雷 等. 电化学方法在不锈钢腐蚀研究中的应用现状及发展趋势 [J]. 工程科学学报, 2020, 42: 549
18 Bosch R W, Schepers B, Vankeerberghen M. Development of a scratch test in an autoclave for the measurement of repassivation kinetics of stainless steel in high temperature high pressure water [J]. Electrochim. Acta, 2004, 49: 3029
doi: 10.1016/j.electacta.2004.01.062
19 Wang J Z, Li X H, Wang J Q, et al. Development of a scratch electrode system in high temperature high pressure water [J]. Corros. Sci., 2015, 95: 125
doi: 10.1016/j.corsci.2015.03.006
20 Lee J B. Effects of alloying elements, Cr, Mo and N on repassivation characteristics of stainless steels using the abrading electrode technique [J]. Mater. Chem. Phys., 2006, 99: 224
doi: 10.1016/j.matchemphys.2005.10.016
21 Qiao Y X, Zheng Y G, Ke W, et al. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions [J]. Corros. Sci., 2009, 51: 979
doi: 10.1016/j.corsci.2009.02.026
22 Escrivà-Cerdán C, Blasco-Tamarit E, García-García D M, et al. Effect of temperature on passive film formation of UNS N08031 Cr-Ni alloy in phosphoric acid contaminated with different aggressive anions [J]. Electrochim. Acta, 2013, 111: 552
doi: 10.1016/j.electacta.2013.08.040
23 Li D G, Chen D R, Feng Y R, et al. Investigation on the composition and semi-conductive property of the passive film on 22Cr duplex stainless steel [J]. Acta Chim. Sinica, 2008, 66: 2329
23 李党国, 陈大融, 冯耀荣 等. 22Cr双相不锈钢钝化膜组成及其半导体性能研究 [J]. 化学学报, 2008, 66: 2329
24 Zhang Y, Li Q, Wang S G. Corrosion resistance of 2507 duplex stainless steel in NaClO solution [J]. J. Mater. Eng., 2016, 44(1):108
doi: 10.11868/j.issn.1001-4381.2016.01.017
24 张 艳, 李 倩, 王胜刚. 2507双相不锈钢在NaClO溶液中的腐蚀性能 [J]. 材料工程, 2016, 44(1): 108
25 Wang L W, Dou Y P, Han S K, et al. Influence of sulfide on the passivation behavior and surface chemistry of 2507 super duplex stainless steel in acidified artificial seawater [J]. Appl. Surf. Sci., 2020, 504: 144340
doi: 10.1016/j.apsusc.2019.144340
[1] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[2] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[3] 张余果, 孙丛涛, 张鹏, 孙明, 耿圆洁, 樊亮, 翟晓凡, 段继周. 合成水化硅酸钙(C-S-H)对水泥基材料Cl- 结合性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 197-203.
[4] 刘晶, 陈宣东, 虞爱平, 巩新枝. 再生混凝土氯离子扩散多相细观数值模拟[J]. 中国腐蚀与防护学报, 2023, 43(5): 1111-1118.
[5] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[6] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[7] 王小红, 李子硕, 唐御峰, 谭浩, 蒋焰罡. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.
[8] 张媛, 张弦, 陈思雨, 李腾, 刘静, 吴开明. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[9] 胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[10] 万晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[11] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[12] 赵宝珠, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[13] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[14] 李建永, 代殿宇, 钱程, 刁书磊, 刘金山, 路通鑫, 孙勇, 肖凤娟. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 156-162.
[15] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.