|
|
温度对CO2饱和页岩气压裂液环境中N80和TP125V钢腐蚀行为影响研究 |
黄家和1, 袁曦2, 陈文2, 闫文静2, 金正宇1, 柳海宪1, 刘宏芳3, 刘宏伟1( ) |
1.中山大学化学工程与技术学院 珠海 519082 2.中国石油西南油气田分公司天然气研究院 成都 610299 3.华中科技大学化学与化学工程学院 武汉 430074 |
|
Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas |
HUANG Jiahe1, YUAN Xi2, CHEN Wen2, YAN Wenjing2, JIN Zhengyu1, LIU Haixian1, LIU Hongfang3, LIU Hongwei1( ) |
1.School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China 2.Research Institute of Natural Gas Technology, Southwest Oil & Gasfield Company, China National Petroleum Corporation, Chengdu 610299, China 3.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
引用本文:
黄家和, 袁曦, 陈文, 闫文静, 金正宇, 柳海宪, 刘宏芳, 刘宏伟. 温度对CO2饱和页岩气压裂液环境中N80和TP125V钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
Jiahe HUANG,
Xi YUAN,
Wen CHEN,
Wenjing YAN,
Zhengyu JIN,
Haixian LIU,
Hongfang LIU,
Hongwei LIU.
Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 251-260.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.076
或
https://www.jcscp.org/CN/Y2023/V43/I2/251
|
[1] |
Gao S K, Dong D Z, Tao K, et al. Experiences and lessons learned from China's shale gas development: 2005-2019 [J]. J. Nat. Gas Sci. Eng., 2021, 85: 103648
doi: 10.1016/j.jngse.2020.103648
|
[2] |
Xiong Q, Hu J Y, Gu C R, et al. The study of under deposit corrosion of carbon steel in the flowback water during shale gas production [J]. Appl. Surf. Sci., 2020, 523: 146534
doi: 10.1016/j.apsusc.2020.146534
|
[3] |
Liu Q P, Feng S Q, Li Y C, et al. Analysis of corrosion reasons for gathering pipelines in shale gas fields [J]. Corros. Prot., 2020, 41(10): 69
|
[3] |
(刘乔平, 冯思乔, 李迎超 等. 页岩气田集输管线的腐蚀原因分析 [J]. 腐蚀与防护, 2020, 41(10): 69)
|
[4] |
Zhao M F, Fu A Q, Hu F T, et al. Corrosion behavior and life prediction of high grade OCTG in full-life-cycle environment of high temperature high pressure gas well [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 535
|
[4] |
(赵密锋, 付安庆, 胡芳婷 等. 高钢级油井管在高温高压气井全生命周期环境中的腐蚀行为及寿命预测 [J]. 中国腐蚀与防护学报, 2021, 41: 535)
|
[5] |
Wu G Y, Zhao W W, Wang Y R, et al. Analysis on corrosion-induced failure of shale gas gathering pipelines in the southern Sichuan Basin of China [J]. Eng. Fail. Anal., 2021, 130: 105796
doi: 10.1016/j.engfailanal.2021.105796
|
[6] |
Lin Y H, Zhu D J, Zeng D Z, et al. Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions [J]. Corros. Sci., 2013, 74: 13
doi: 10.1016/j.corsci.2013.03.018
|
[7] |
Nazari M H, Allahkaram S R, Kermani M B. The effects of temperature and pH on the characteristics of corrosion product in CO2 corrosion of grade X70 steel [J]. Mater. Design, 2010, 31: 3559
doi: 10.1016/j.matdes.2010.01.038
|
[8] |
Liu H W, Cheng Y F. Mechanistic aspects of microbially influenced corrosion of X52 pipeline steel in a thin layer of soil solution containing sulphate-reducing bacteria under various gassing conditions [J]. Corros. Sci., 2018, 133: 178
doi: 10.1016/j.corsci.2018.01.029
|
[9] |
Qin M, He G X, Liao K X, et al. CO2-O2-SRB-Cl- multifactor synergistic corrosion in shale gas pipelines at a low liquid flow rate [J]. J. Mater. Eng. Perform., 2022, 31: 4820
doi: 10.1007/s11665-022-06580-3
|
[10] |
Hua Y, Xu S S, Wang Y, et al. The formation of FeCO3 and Fe3O4 on carbon steel and their protective capabilities against CO2 corrosion at elevated temperature and pressure [J]. Corros. Sci., 2019, 157: 392
doi: 10.1016/j.corsci.2019.06.016
|
[11] |
Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
|
[11] |
(张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143)
|
[12] |
Gao M, Pang X, Gao K. The growth mechanism of CO2 corrosion product films [J]. Corros. Sci., 2011, 53: 557
doi: 10.1016/j.corsci.2010.09.060
|
[13] |
Wei Z L, Luo F J, Zhao J M. Study on relation between temperature and corrosion of tubing in xushen gas field [J]. Corros. Prot. Petrochem. Ind., 2015, 32(1): 5
|
[13] |
(魏振禄, 罗福建, 赵景茂. 徐深气田油管腐蚀与温度之间的关系研究 [J]. 石油化工腐蚀与防护, 2015, 32(1): 5)
|
[14] |
Ge R, Zhang J. Corrosion behavior of N80 tubular steel in simulated oilfield CO2 environment [J]. Welded Pipe Tube, 2019, 42(8): 1
|
[14] |
(葛睿, 张钧. N80油管钢在模拟油田CO2环境中的腐蚀行为 [J]. 焊管, 2019, 42(8): 1)
|
[15] |
Wang S J. Control value of corrosion rate for tubing and casing of injection-production well in CO2 flooding oilfield [J]. Corros. Prot., 2015, 36: 218
|
[15] |
(王世杰. CO2驱油田注采井油套管腐蚀速率控制值 [J]. 腐蚀与防护, 2015, 36: 218)
|
[16] |
Yin Z F, Feng Y R, Zhao W Z, et al. Effect of temperature on CO2 corrosion of carbon steel [J]. Surf. Interface Anal., 2009, 41: 517
doi: 10.1002/sia.3057
|
[17] |
Zhang H, Zhao Y L, Jiang Z D. Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to CO2 and Cl- environment [J]. Mater. Lett., 2005, 59: 3370
doi: 10.1016/j.matlet.2005.06.002
|
[18] |
Bai Y L, Shen G L, Qin Q Y, et al. Effect of thiourea imidazoline quaternary ammonium salt corrosion inhibitor on corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 60
|
[18] |
(白云龙, 沈国良, 覃清钰 等. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 60)
|
[19] |
Eliyan F F, Alfantazi A. On the theory of CO2 corrosion reactions-Investigating their interrelation with the corrosion products and API-X100 steel microstructure [J]. Corros. Sci., 2014, 85: 380
doi: 10.1016/j.corsci.2014.04.055
|
[20] |
Hua Y, Shamsa A, Barker R, et al. Protectiveness, morphology and composition of corrosion products formed on carbon steel in the presence of Cl-, Ca2+ and Mg2+ in high pressure CO2 environments [J]. Appl. Surf. Sci., 2018, 455: 667
doi: 10.1016/j.apsusc.2018.05.140
|
[21] |
Shamsa A, Barker R, Hua Y, et al. Impact of corrosion products on performance of imidazoline corrosion inhibitor on X65 carbon steel in CO2 environments [J]. Corros. Sci., 2021, 185: 109423
doi: 10.1016/j.corsci.2021.109423
|
[22] |
Bai H T, Yang M, Dong X W, et al. Research progress on CO2 corrosion product scales of carbon steels [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 295
|
[22] |
(白海涛, 杨敏, 董小卫 等. CO2腐蚀产物膜的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 295)
|
[23] |
Zhu Z J, Teevens P J, Xue H B, et al. Numerical simulation and experimental verification of pitting corrosion propagation in sweet pipeline service [J]. J. Pipeline Sci. Eng., 2022, 2: 78
doi: 10.1016/j.jpse.2022.01.001
|
[24] |
Wang B, Du N, Zhang H, et al. Accelerating effect of pitting corrosion products on metastable pitting initiation and the stable pitting growth of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 338
|
[24] |
(王标, 杜楠, 张浩 等. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用 [J]. 中国腐蚀与防护学报, 2019, 39: 338)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|