Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 251-260     CSTR: 32134.14.1005.4537.2022.076      DOI: 10.11902/1005.4537.2022.076
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
温度对CO2饱和页岩气压裂液环境中N80和TP125V钢腐蚀行为影响研究
黄家和1, 袁曦2, 陈文2, 闫文静2, 金正宇1, 柳海宪1, 刘宏芳3, 刘宏伟1()
1.中山大学化学工程与技术学院 珠海 519082
2.中国石油西南油气田分公司天然气研究院 成都 610299
3.华中科技大学化学与化学工程学院 武汉 430074
Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas
HUANG Jiahe1, YUAN Xi2, CHEN Wen2, YAN Wenjing2, JIN Zhengyu1, LIU Haixian1, LIU Hongfang3, LIU Hongwei1()
1.School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
2.Research Institute of Natural Gas Technology, Southwest Oil & Gasfield Company, China National Petroleum Corporation, Chengdu 610299, China
3.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(29648 KB)   HTML
摘要: 

采用失重法、扫描电镜、X射线衍射仪、三维超景深显微镜结合电化学测量,着重研究了N80和TP125V钢在页岩气环境中60~120 ℃范围内的腐蚀速率的变化规律。结果表明,N80和TP125V钢腐蚀速率随温度的增加先增加后减小,100 ℃时达到最高值,分别为 (0.169±0.014) 和 (0.198±0.007) mm/a;局部腐蚀速率也达到最大值,分别为1.13和2.47 mm/a,点蚀坑密度分别是2.0×103和2.6×103 pits/cm2。在60和120 ℃时,N80钢的腐蚀速率要高于TP125V钢的;而在90、100和110 ℃时,TP125V钢的腐蚀速率要高于N80钢的。表面分析结果表明,温度同时也会显著影响腐蚀产物膜的结构和组成。

关键词 腐蚀页岩气N80钢TP125V钢温度局部腐蚀    
Abstract

Temperature is one of the key factors influencing the corrosion of oil pipeline steel in the shale gas environment. This work studied the effect of temperature on the corrosion behavior of pipeline steels N80 and TP125V in an artificial CO2-saturated fracturing fluid of shale gas by means of mass loss measurement, electrochemical measurement, scanning electron microscopy, X-ray diffractometer and 3D microscope. Results indicate that among others, the corrosion rates of steels N80 and TP125V reached the highest at 100 ℃ with values of (0.169±0.014) and (0.198±0.007) mm/a, respectively. Correspondingly, the highest localized corrosion rates were 1.13 and 2.47 mm/a, while the densities of corrosion pits were 2.0×103 and 2.6×103 pits/cm2, respectively. In conclusion, the corrosion rates of steels N80 and TP125V increased firstly with the increasing temperature, further reached the maximum at 100 ℃, and then decreased gradually. The corrosion rates of N80 steel were higher than those of TP125V steel at 60 and 120 ℃ respectively, but the corrosion rates of the two steels are reversed at 90, 100, and 100 ℃. The temperature could also influence the structure and components of the formed corrosion products according to the surface analysis results.

Key wordscorrosion    shale gas    N80 steel    TP125V steel    temperature    localized corrosion
收稿日期: 2022-03-16      32134.14.1005.4537.2022.076
ZTFLH:  TG174  
基金资助:国家自然科学基金(51901253);广东省基础与应用基础研究基金(2019A1515011135);中央高校基本科研业务费专项(19lgzd18);材料化学与服役失效湖北省重点实验开放课题(2020MCF02)
作者简介: 黄家和,男,1997年生,硕士生

引用本文:

黄家和, 袁曦, 陈文, 闫文静, 金正宇, 柳海宪, 刘宏芳, 刘宏伟. 温度对CO2饱和页岩气压裂液环境中N80和TP125V钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
Jiahe HUANG, Xi YUAN, Wen CHEN, Wenjing YAN, Zhengyu JIN, Haixian LIU, Hongfang LIU, Hongwei LIU. Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 251-260.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.076      或      https://www.jcscp.org/CN/Y2023/V43/I2/251

图1  N80钢和TP125V钢在不同温度条件下饱和CO2腐蚀介质中浸泡14 d后由失重计算得到的腐蚀速率
图2  在不同温度下饱和CO2腐蚀测试介质中浸泡14 d后N80钢表面腐蚀产物SEM形貌和EDS谱
T / oCCOCaFeSiMnCuMg
608.0942.0542.886.63---------0.35
9010.9243.290.3325.811.340.46------
1006.4841.150.2450.710.490.92------
1106.4529.520.5154.46---0.726.03---
1202.9831.18---65.34---0.50------
表1  不同温度条件下浸泡14 d后N80钢表面腐蚀产物 的EDS能谱分析结果 (mass fraction / %)
图3  饱和CO2腐蚀测试介质中测试14 d后不同温度条件下TP125V钢表面腐蚀产物SEM形貌和EDS谱
T / oCCOCaFeSiMnCuBaMgZrCr
609.0230.330.5554.150.970.603.31------0.80---
909.2324.415.6953.542.360.351.27---1.33---0.84
1007.6434.371.0653.060.790.50------0.351.16---
1105.1313.931.1866.660.360.44---5.882.121.001.08
1205.8241.45---51.85---0.24------------0.23
表2  在不同温度下浸泡14 d后TP125V钢表面腐蚀产物的EDS能谱分析结果 (mass fraction / %)
图4  在不同温度下饱和CO2腐蚀测试介质中浸泡14 d后N80钢和TP125V钢表面腐蚀产物XRD谱
图5  N80钢在不同温度下饱和CO2腐蚀测试介质中浸泡14 d且去除腐蚀产物后的表面形貌
图6  TP125V钢在不同温度下饱和CO2腐蚀测试介质中浸泡14 d且去除腐蚀产物后的表面形貌
图7  由去除腐蚀产物后3D表面形貌图统计得到N80钢和TP125V钢局部腐蚀速率和点蚀坑密度
图8  TP125V钢在不同温度下饱和CO2腐蚀测试介质中浸泡14 d后的极化曲线
TBaV·dec-1BcV·dec-1Ecorr vs Ag/AgClVIcorrA·cm-2Corrosion rate mm·a-1
600.316-0.145-0.6071.32×10-70.002
900.246-0.085-0.6154.04×10-60.047
1000.130-0.179-0.7844.63×10-50.544
1100.173-0.135-0.6166.74×10-70.008
1200.218-0.068-0.4263.51×10-70.004
表3  TP125V钢极化曲线的拟合结果
[1] Gao S K, Dong D Z, Tao K, et al. Experiences and lessons learned from China's shale gas development: 2005-2019 [J]. J. Nat. Gas Sci. Eng., 2021, 85: 103648
doi: 10.1016/j.jngse.2020.103648
[2] Xiong Q, Hu J Y, Gu C R, et al. The study of under deposit corrosion of carbon steel in the flowback water during shale gas production [J]. Appl. Surf. Sci., 2020, 523: 146534
doi: 10.1016/j.apsusc.2020.146534
[3] Liu Q P, Feng S Q, Li Y C, et al. Analysis of corrosion reasons for gathering pipelines in shale gas fields [J]. Corros. Prot., 2020, 41(10): 69
[3] (刘乔平, 冯思乔, 李迎超 等. 页岩气田集输管线的腐蚀原因分析 [J]. 腐蚀与防护, 2020, 41(10): 69)
[4] Zhao M F, Fu A Q, Hu F T, et al. Corrosion behavior and life prediction of high grade OCTG in full-life-cycle environment of high temperature high pressure gas well [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 535
[4] (赵密锋, 付安庆, 胡芳婷 等. 高钢级油井管在高温高压气井全生命周期环境中的腐蚀行为及寿命预测 [J]. 中国腐蚀与防护学报, 2021, 41: 535)
[5] Wu G Y, Zhao W W, Wang Y R, et al. Analysis on corrosion-induced failure of shale gas gathering pipelines in the southern Sichuan Basin of China [J]. Eng. Fail. Anal., 2021, 130: 105796
doi: 10.1016/j.engfailanal.2021.105796
[6] Lin Y H, Zhu D J, Zeng D Z, et al. Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions [J]. Corros. Sci., 2013, 74: 13
doi: 10.1016/j.corsci.2013.03.018
[7] Nazari M H, Allahkaram S R, Kermani M B. The effects of temperature and pH on the characteristics of corrosion product in CO2 corrosion of grade X70 steel [J]. Mater. Design, 2010, 31: 3559
doi: 10.1016/j.matdes.2010.01.038
[8] Liu H W, Cheng Y F. Mechanistic aspects of microbially influenced corrosion of X52 pipeline steel in a thin layer of soil solution containing sulphate-reducing bacteria under various gassing conditions [J]. Corros. Sci., 2018, 133: 178
doi: 10.1016/j.corsci.2018.01.029
[9] Qin M, He G X, Liao K X, et al. CO2-O2-SRB-Cl- multifactor synergistic corrosion in shale gas pipelines at a low liquid flow rate [J]. J. Mater. Eng. Perform., 2022, 31: 4820
doi: 10.1007/s11665-022-06580-3
[10] Hua Y, Xu S S, Wang Y, et al. The formation of FeCO3 and Fe3O4 on carbon steel and their protective capabilities against CO2 corrosion at elevated temperature and pressure [J]. Corros. Sci., 2019, 157: 392
doi: 10.1016/j.corsci.2019.06.016
[11] Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
[11] (张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143)
[12] Gao M, Pang X, Gao K. The growth mechanism of CO2 corrosion product films [J]. Corros. Sci., 2011, 53: 557
doi: 10.1016/j.corsci.2010.09.060
[13] Wei Z L, Luo F J, Zhao J M. Study on relation between temperature and corrosion of tubing in xushen gas field [J]. Corros. Prot. Petrochem. Ind., 2015, 32(1): 5
[13] (魏振禄, 罗福建, 赵景茂. 徐深气田油管腐蚀与温度之间的关系研究 [J]. 石油化工腐蚀与防护, 2015, 32(1): 5)
[14] Ge R, Zhang J. Corrosion behavior of N80 tubular steel in simulated oilfield CO2 environment [J]. Welded Pipe Tube, 2019, 42(8): 1
[14] (葛睿, 张钧. N80油管钢在模拟油田CO2环境中的腐蚀行为 [J]. 焊管, 2019, 42(8): 1)
[15] Wang S J. Control value of corrosion rate for tubing and casing of injection-production well in CO2 flooding oilfield [J]. Corros. Prot., 2015, 36: 218
[15] (王世杰. CO2驱油田注采井油套管腐蚀速率控制值 [J]. 腐蚀与防护, 2015, 36: 218)
[16] Yin Z F, Feng Y R, Zhao W Z, et al. Effect of temperature on CO2 corrosion of carbon steel [J]. Surf. Interface Anal., 2009, 41: 517
doi: 10.1002/sia.3057
[17] Zhang H, Zhao Y L, Jiang Z D. Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to CO2 and Cl- environment [J]. Mater. Lett., 2005, 59: 3370
doi: 10.1016/j.matlet.2005.06.002
[18] Bai Y L, Shen G L, Qin Q Y, et al. Effect of thiourea imidazoline quaternary ammonium salt corrosion inhibitor on corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 60
[18] (白云龙, 沈国良, 覃清钰 等. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 60)
[19] Eliyan F F, Alfantazi A. On the theory of CO2 corrosion reactions-Investigating their interrelation with the corrosion products and API-X100 steel microstructure [J]. Corros. Sci., 2014, 85: 380
doi: 10.1016/j.corsci.2014.04.055
[20] Hua Y, Shamsa A, Barker R, et al. Protectiveness, morphology and composition of corrosion products formed on carbon steel in the presence of Cl-, Ca2+ and Mg2+ in high pressure CO2 environments [J]. Appl. Surf. Sci., 2018, 455: 667
doi: 10.1016/j.apsusc.2018.05.140
[21] Shamsa A, Barker R, Hua Y, et al. Impact of corrosion products on performance of imidazoline corrosion inhibitor on X65 carbon steel in CO2 environments [J]. Corros. Sci., 2021, 185: 109423
doi: 10.1016/j.corsci.2021.109423
[22] Bai H T, Yang M, Dong X W, et al. Research progress on CO2 corrosion product scales of carbon steels [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 295
[22] (白海涛, 杨敏, 董小卫 等. CO2腐蚀产物膜的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 295)
[23] Zhu Z J, Teevens P J, Xue H B, et al. Numerical simulation and experimental verification of pitting corrosion propagation in sweet pipeline service [J]. J. Pipeline Sci. Eng., 2022, 2: 78
doi: 10.1016/j.jpse.2022.01.001
[24] Wang B, Du N, Zhang H, et al. Accelerating effect of pitting corrosion products on metastable pitting initiation and the stable pitting growth of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 338
[24] (王标, 杜楠, 张浩 等. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用 [J]. 中国腐蚀与防护学报, 2019, 39: 338)
[1] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[3] 邢少华, 刘仲晔, 刘近增, 白舒宇, 钱峣, 张大磊. ZCuSn5Pb5Zn5/B10偶对在流动海水中的腐蚀规律与机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[4] 王华, 王英杰, 刘恩泽. Ni含量对Co-Al-W合金热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[5] 张心怡, 李聪, 汪禹熙, 黄美, 朱卉平, 刘芳, 刘洋, 牛风雷. 铅基堆结构材料液态金属腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[6] 朱烨森, 蔡锟, 胡葆文, 夏云秋, 胡涛勇, 黄一. 海底管道CO2 腐蚀特性及预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[7] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[8] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[9] 何训, 吴梦雪, 尹力, 朱金. 风-车流耦合作用下悬索桥吊索钢丝的双蚀坑损伤演化及疲劳寿命研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[10] 田光元, 严程铭, 杨智皓, 王俊升. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[11] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[12] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[13] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[14] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[15] 商强, 满成, 逄昆, 崔中雨, 董超芳, 崔洪芝. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.