Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (5): 463-468    DOI: 10.11902/1005.4537.2019.203
  海洋材料腐蚀与防护专辑 本期目录 | 过刊浏览 |
热带海洋大气环境中EH36船板钢早期腐蚀行为研究
李子运1, 王贵1, 罗思维1, 邓培昌2, 胡杰珍1(), 邓俊豪1, 徐敬明1
1 广东海洋大学机械与动力工程学院 湛江 524088
2 广东海洋大学化学与环境学院 湛江 524088
Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere
LI Ziyun1, WANG Gui1, LUO Siwei1, DENG Peichang2, HU Jiezhen1(), DENG Junhao1, XU Jingming1
1 College of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
2 College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
全文: PDF(15727 KB)   HTML
摘要: 

在高湿、高热、高盐度和强辐照的湛江海洋大气腐蚀试验站对EH36船板钢进行了15、30、90、180和360 d的暴露实验。通过腐蚀失重计算了不同暴露周期的腐蚀速率,采用SEM观察了锈层表面和截面的微观形貌,采用X射线衍射仪分析了锈层的组成成分,采用EDS分析了锈层中的元素分布,同时对暴露后的试样进行了极化曲线测试。结果表明:EH36船板钢的腐蚀速率先增大、后减小;暴露360 d后,Cr、Ni和Si扩散到锈层中,分布较为均匀,提高了钢的耐腐蚀性能;暴露180和360 d的锈层中均含有γ-FeOOH、β-FeOOH、Fe3O4α-FeOOH,暴露360 d的锈层中α-FeOOH较多,β-FeOOH较少,锈层中α/γ=0.615,尚未形成稳定的保护性锈层。

关键词 EH36船板钢热带海洋大气腐蚀极化曲线    
Abstract

The EH36 ship plate steel was exposed for 15, 30, 90, 180 and 360 d respectively in the atmosphere with high humidity, high heat, high salinity and strong radiation at the Zhanjiang marine atmospheric corrosion test station situated in the south of China. The corrosion behavior of different exposure periods were characterized by means of corrosion weight loss method, polarization curve measurement, scanning electron microscopy with energy dispersive spectroscopy and X-ray diffractometer. The results show that the corrosion rate of EH36 ship plate steel increases first and then decreases. After exposure for 360 d, Cr, Ni and Si elements diffuse into and uniformly distribute in the rust scale, which then improves the corrosion resistance of the steel. After exposure for 180 and 360 d, the formed rust scales composed of γ-FeOOH, β-FeOOH, Fe3O4 and α-FeOOH. While the one corresponded to 360 d exposure has more α-FeOOH and less β-FeOOH. In the rust scale of EH36 ship steel exposed for 360 d the ratio of α/γ=0.615, however, a stable protective rust scale has not yet appeared by this time.

Key wordsEH36 ship plate steel    tropical marine atmosphere    corrosion    polarization curve
收稿日期: 2019-11-13     
ZTFLH:  TG172.3  
基金资助:国家自然科学基金(51801033);广东大学生“海之帆-启航计划”(qhjh2017zr06)
通讯作者: 胡杰珍     E-mail: jiezhen0520@163.com
Corresponding author: HU Jiezhen     E-mail: jiezhen0520@163.com
作者简介: 李子运,男,1990年生,硕士生

引用本文:

李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
Ziyun LI, Gui WANG, Siwei LUO, Peichang DENG, Jiezhen HU, Junhao DENG, Jingming XU. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 463-468.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.203      或      https://www.jcscp.org/CN/Y2020/V40/I5/463

图1  EH36船板钢腐蚀速率随暴露时间变化的曲线
图2  EH36船板钢暴露不同时间后表面宏观形貌
图3  EH36船板钢暴露不同时间后表面微观形貌
图4  EH36船板钢暴露180 d后锈层截面腐蚀形貌和元素分布
图5  EH36船板钢暴露360 d后锈层截面腐蚀形貌和元素分布
图6  EH36船板钢暴露不同时间后的锈层XRD谱
图7  EH36船板钢暴露不同时间后的极化曲线
Exposure time / dEcorr / mVIcorr / μA
15-333.025.29
180-519.2519.8
360-392.289.58
表1  EH36船板钢暴露不同时间后的腐蚀电位和腐蚀电流
[1] Wang J, Li T Z. Development and production of low carbon high strength and toughness EH36 hull plate with TMCP technology [J]. Shandong Metall., 2016, 38(4): 5
[1] (王杰, 李廷芝. 低碳型EH36高强韧性船板钢开发生产 [J]. 山东冶金, 2016, 38(4): 5)
[2] Li Z S. Study on microstructure and property of 360 MPa grade ship plate steel [D]. Ji'nan: Shandong University, 2010
[2] (李贞顺. 360 MPa级船板钢的组织与性能研究 [D]. 济南: 山东大学, 2010)
[3] Yang Y, Fan Y, Zhang W L. Research on corrosion behavior of EH36-NS steel in the simulated marine atmosphere [J]. NISCO Technol. Manag., 2015, (3): 6
[3] (杨英, 范益, 张万灵. EH36-NS在模拟海洋大气环境下的腐蚀行为研究 [J]. 南钢科技管理, 2015, (3): 6)
[4] Tang D, Zhang M J, Wu H B, et al. Atmospheric corrosion resistance of EH36 ocean platform steel [J]. Corros. Prot., 2012, 33: 558
[4] (唐荻, 张明洁, 武会宾等. EH36级平台钢耐海洋大气腐蚀性能 [J]. 腐蚀与防护, 2012, 33: 558)
[5] Gao H L, Tang W, Luo D, et al. Corrosion analysis of EH36 corrosion resistant steel for cargo oil tank [J]. Met. Mater. Metall. Eng., 2016, 44(4): 10
[5] (高海亮, 汤伟, 罗登等. 工业试制油轮货油舱用耐蚀钢EH36的耐蚀性分析 [J]. 金属材料与冶金工程, 2016, 44(4): 10)
[6] Deng J H, Hu J Z, Deng P C, et al. Effect of oxide scales on initial corrosion behavior of SPHC hot rolled steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 331
[6] (邓俊豪, 胡杰珍, 邓培昌等. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 331)
[7] Li Z Y, Deng P C, Hu J Z, et al. Corrosion law of cold rolled steel plate in tropical ocean atmospheric environment [J]. Iron Steel, 2019, 54(9): 99
[7] (李子运, 邓培昌, 胡杰珍等. 热带海洋大气环境冷轧钢板锈蚀规律 [J]. 钢铁, 2019, 54(9): 99)
[8] State Bureau of Technical Supervision. GB/T 14165-1993 Ferrous metals- Test method of atmospheric exposure [S]. Beijing: China Standard Press, 1993
[8] (国家技术监督局. GB/T 14165-1993黑色金属室外大气暴露试验方法 [S]. 北京: 中国标准出版社, 1993)
[9] State Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 16545-2015 Corrosion of metals and alloys-Removal of corrosion products from corrosion test specimens [S]. Beijing: China Standard Press, 2016
[9] (中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 16545-2015金属和合金的腐蚀腐蚀试样上腐蚀产物的清除 [S]. 北京: 中国标准出版社, 2016)
[10] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corros. Sci., 1999, 41: 1687
[11] Xiao K, Dong C F, Li X G, et al. Atmospheric corrosion behavior of weathering steels in initial stage [J]. J. Iron Steel Res., 2008, 20(10): 53
[11] (肖葵, 董超芳, 李晓刚等. 大气腐蚀下耐候钢的初期行为规律 [J]. 钢铁研究学报, 2008, 20(10): 53)
[12] Cano H, Neff D, Morcillo M, et al. Characterization of corrosion products formed on Ni 2.4 wt%-Cu 0.5 wt%-Cr 0.5 wt% weathering steel exposed in marine atmospheres [J]. Corros. Sci., 2014, 87: 438
[13] Diaz I, Cano H, De La Fuente D, et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity [J]. Corros. Sci., 2013, 76: 348
[14] Hœrlé S, Mazaudier F, Dillmann P, et al. Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles [J]. Corros. Sci., 2004, 46: 1431
[15] Ishikawa T, Takeuchi K, Kandori K, et al. Transformation of γ-FeOOH to α-FeOOH in acidic solutions containing metal ions [J]. Colloids Surf., 2005, 266A: 155
[16] Asami K, Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years [J]. Corros. Sci., 2003, 45: 2671
[17] Wei W, Cheng X Q, Hou H X, et al. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere [J]. Appl. Surf. Sci., 2018, 436: 80
[18] Zheng Y Y, Zou Y, Wang J. Research progress on corrosion of carbon steels under rust layer in marine environment [J]. Corros. Sci. Prot. Technol., 2011, 23: 93
[18] (郑莹莹, 邹妍, 王佳. 海洋环境中锈层下碳钢腐蚀行为的研究进展 [J]. 腐蚀科学与防护技术, 2011, 23: 93)
[19] Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
[20] Shi Z J, Wang L, Chen N, et al. Development and treatment of surface rust stabilization technology of weathering steel [J]. Corros. Sci. Prot. Technol., 2015, 27: 503
[20] (石振家, 王雷, 陈楠等. 耐候钢表面锈层及其稳定化处理现状与发展趋势 [J]. 腐蚀科学与防护技术, 2015, 27: 503)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.