Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (4): 302-308    DOI: 10.11902/1005.4537.2019.126
  研究报告 本期目录 | 过刊浏览 |
TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较
李清1,2, 张德平1,2, 李晓荣3, 王薇4, 孙宝壮5(), 艾池1()
1.东北石油大学油气井工程学院 大庆 163318
2.中国石油吉林油田公司二氧化碳开发公司 松原 138000
3.天津大港油田集团工程建设有限责任公司 天津 300280
4.中国石油吉林油田分公司油气工程研究院 松原 138000
5.北京科技大学腐蚀与防护中心 北京 100083
Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well
LI Qing1,2, ZHANG Deping1,2, LI Xiaorong3, WANG Wei4, SUN Baozhuang5(), AI Chi1()
1. Northeast Petroleum University Oil and Gas Well Engineering College, Daqing 163318, China
2. Carbon Dioxide Development Company, Jilin Oil Field Company, Songyuan 138000, China
3. Tianjin Dagang Oilfield Group Engineering Construction Co. Ltd. , Tianjin 300280, China
4. Oil and Gas Engineering Research Institute, PetroChina Jilin Oilfield Company, Songyuan 138000, China
5. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(6083 KB)   HTML
摘要: 

利用U形弯试样浸泡实验和电化学测试技术研究了两种油套管钢在CO2注入井环空环境中的应力腐蚀开裂行为。结果表明,TP110TS钢和P110钢在注入井环空环境 (大量CO2-微量H2S) 下存在一定的应力腐蚀敏感性,其应力腐蚀机制为阳极溶解和氢脆协同作用机制。在CO2-H2S环境下,咪唑啉类缓蚀剂的浓度对TP110TS和P110油套管钢的应力腐蚀产生不同的影响,添加足量的缓蚀剂对P110钢的应力腐蚀行为产生较好的抑制效果;但当添加量不足时,缓蚀剂会增加P110钢发生应力腐蚀的倾向性。而TP110TS钢的应力腐蚀敏感性随着缓蚀剂浓度的增加而减小,相对更适用于添加缓蚀剂的CO2-H2S环境。

关键词 TP110TS钢P110钢环空环境应力腐蚀CO2注入井    
Abstract

The stress corrosion cracking behavior of two oil casing steels TP110TS and P110 in a simulated solution in the annulus space of CO2 injection wells was comparatively studied by U-bend specimen immersion test and electrochemical test. The results show that TP110TS steel and P110 steel have certain degree of stress corrosion sensitivity in the solution (large amount of CO2 and micro H2S), and the stress corrosion mechanism is the synergistic mechanism of anodic dissolution (AD) and hydrogen embrittlement (HE). In the CO2-H2S environment, the concentration of imidazoline corrosion inhibitor has different effect on the stress corrosion of oil casing steels TP110TS and P110. Adding sufficient corrosion inhibitor has a good inhibitory effect on the stress corrosion behavior of P110 steel. However, when the added amount is insufficient, the corrosion inhibitor increases the stress corrosion tendency of P110 steel. The stress corrosion sensitivity of TP110TS steel decreases with the increase of corrosion inhibitor concentration. It follows that TP110TS is more suitable for the CO2-H2S environment where corrosion inhibitors are added.

Key wordsTP110TS steel    P110 steel    annulus environment    stress corrosion    CO2 injection well
收稿日期: 2019-08-23     
ZTFLH:  TG174.42  
基金资助:国家科技油气重大专项(2016ZX05016002)
通讯作者: 孙宝壮,艾池     E-mail: sunbaoz9406@163.com;aichi2001@163.com
Corresponding author: SUN Baozhuang,AI Chi     E-mail: sunbaoz9406@163.com;aichi2001@163.com
作者简介: 李清,男,1983年生,硕士,高级工程师

引用本文:

李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
Qing LI, Deping ZHANG, Xiaorong LI, Wei WANG, Baozhuang SUN, Chi AI. Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 302-308.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.126      或      https://www.jcscp.org/CN/Y2020/V40/I4/302

SteelCSiMnSPCrFe
TP110TS0.330.210.640.00340.00933.03Bal.
P1100.250.232.640.0030.00950.033Bal.
表1  TP110TS和P110油管钢的化学组成
图1  P110和TP110TS油管钢的金相组织
图2  TP110TS和 P110钢在添加不同浓度缓蚀剂条件下浸泡720 h后的宏观形貌
AlloyCorrosion inhibitor concentration / g·L-1Degree of fractureDegree of corrosion
P1100FractureCorrosion crack
0.4UnbrokenSevere pitting corrosion
1UnbrokenSlightly corroded, less pitting
TP110TS0FractureCorrosion crack
0.4UnbrokenSevere pitting corrosion
1UnbrokenSlightly corroded, less pitting
表2  不同缓蚀剂浓度条件下两类油套管钢U形弯腐蚀及开裂情况对比
图3  P110和 TP110TS钢在不同浓度缓蚀剂条件下浸泡720 h除锈后的微观形貌
图4  不同缓蚀剂浓度下TP110TS和P110钢的极化曲线
ConditionEcorr (vs SCE) / mVIcorr / μA·cm-2
TP110TS-0.4 g/L-113.852.595
TP110TS-1 g/L-18.841.520
P110-0.4 g/L-13.1641.610
P110-1 g/L-153.340.450
表3  不同缓蚀剂浓度下TP110TS和P110钢的极化曲线拟合结果
图5  不同缓蚀剂浓度下TP110TS和P110钢的电化学阻抗谱
图6  不同缓蚀剂浓度下TP110TS和P110钢EIS的等效电路图
ConditionRs / Ω·cm2Qf / Ω-1·cm-2·SnRf / Ω·cm2Qdl / Ω-1·cm-2·SnRct / Ω·cm2
TP110TS-0.4 g/L33.172.306×10-9395.13.581×10-61.122×104
TP110TS-1 g/L17011.720×10-4870.82.832×10-41.05×106
P110-0.4 g/L713.41.057×10-103.642.569×10-10.631×104
P110-1 g/L1.353×10-46.495×10-874.51.499×10-47.056×1015
表4  不同缓蚀剂浓度下TP110TS和P110钢的电化学等效电路图拟合结果
[1] Li S L, Tang Y, Hou C X. Present situation and development trend of CO2 injection enhanced oil recovery technology [J]. Rsvr. Eval. Dvlopmt., 2019, 9(3): 1
[1] (李士伦, 汤勇, 侯承希. 注CO2提高采收率技术现状及发展趋势 [J]. 油气藏评价与开发, 2019, 9(3): 1)
[2] Zhang N, Wei M Z, Bai B J. Statistical and analytical review of worldwide CO2 immiscible field applications [J]. Fuel, 2018, 220: 89
[3] Liu Z Y, Li H, Jia Z J, et al. Failure analysis of P110 steel tubing in low-temperature annular environment of CO2 flooding wells [J]. Eng. Failure Anal., 2016, 60: 296
[4] Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a pmid: 26607528
[5] Zhang G A, Cheng Y F. On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production [J]. Corros. Sci., 2009, 51: 87
[6] Liu Z Y, Wang X Z, Liu R K, et al. Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H2S/CO2 annular environment [J]. J. Mater. Eng. Perform., 2014, 23: 1279
[7] Sun F L, Ren S, Li Z, et al. Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments [J]. Mater. Sci. Eng., 2017, A685: 145
[8] Liu Z Y, Zhao T L, Liu R K, et al. Influence factors on stress corrosion cracking of P110 tubing steel under CO2 injection well annulus environment [J]. J. Cent. South Univ., 2016, 23: 757
[9] Liu Q, Li Z, Liu Z Y, et al. Effects of H2S/HS- on stress corrosion cracking behavior of X100 pipeline steel under simulated sulfate-reducing bacteria metabolite conditions [J]. J. Mater. Eng. Perform., 2017, 26: 2763
[10] Liu R K, Zhang D P, Hao W K, et al. Effect of H2S partial pressure on stress corrosion cracking behavior of N80 oil casing steel in the environment of CO2 [J]. J. Sichuan Univ. (Eng. Sci. Ed.), 2013, 45(6): 196
[10] (刘然克, 张德平, 郝文魁等. H2S分压对N80油套管钢CO2环境下应力腐蚀开裂的影响 [J]. 四川大学学报 (工程科学版), 2013, 45(6): 196)
[11] Smanio V, Kittel J, Fregonese M, et al. Acoustic emission monitoring of wet H2S cracking of linepipe steels: Application to hydrogen-induced cracking and stress-oriented hydrogen-induced cracking [J]. Corros. Sci., 2011, 67: 065002-1
[12] Liu Z Y, Dong C F, Li X G. Stress corrosion cracking of 3Cr17Ni7Mo2SiN stainless steel in sulfide hydrogen solutions [J]. J. Mech. Eng., 2011, 47(6): 62
[12] (刘智勇, 董超芳, 李晓刚. 3Cr17Ni7Mo2SiN不锈钢硫化氢环境下的应力腐蚀开裂 [J]. 机械工程学报, 2011, 47(6): 62)
[13] Zhao J M, Duan H B, Jiang R J. Synergistic corrosion inhibition effect of quinoline quaternary ammonium salt and Gemini surfactant in H2S and CO2 saturated brine solution [J]. Corros. Sci., 2015, 91: 108
[14] Kang Y, Luo H. Research advance in inhibition of imidazoline corrosion inhibitor from CO2/H2S corrosion [J]. Adv. Fine Petrochem., 2011, 12(9): 55
[14] (康永, 罗红. 咪唑啉类缓蚀剂对CO2/H2S腐蚀抑制作用研究进展 [J]. 精细石油化工进展, 2011, 12(9): 55)
[15] Zhao J M, Zhao Q F, Jiang R J. Relationship between structure of imidazoline derivates with corrosion inhibition performance in CO2/H2S environment [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 142
[15] (赵景茂, 赵起锋, 姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究 [J]. 中国腐蚀与防护学报, 2017, 37: 142)
[16] López D A, Simison S N, de Sánchez S R. Inhibitors performance in CO2 corrosion: EIS studies on the interaction between their molecular structure and steel microstructure [J]. Corros. Sci., 2005, 47: 735
[17] Li J K, Zhao X L, Luan Y, et al. GB/T 13298-2015 Inspection methods of microstructure for metals [S]. Beijing: China Standard Press, 2016
[17] 李继康, 赵晓丽, 栾燕等. GB/T 13298-2015 金属显微组织检验方法 [S]. 北京: 中国标准出版社, 2016)
[18] Zhao Y, Xie J F, Zeng G X, et al. Pourbaix diagram for HP-13Cr stainless steel in the aggressive oilfield environment characterized by high temperature, high CO2 partial pressure and high salinity [J]. Electrochim. Acta, 2019, 293: 116
[19] Fragiel A, Serna S, Pérez R. Electrochemical study of two microalloyed pipeline steels in H2S environments [J]. Int. J. Hydrogen Energy, 2005, 30: 1303
[20] Liu Z Y, Dong C F, Li X G, et al. Stress corrosion cracking of 2205 duplex stainless steel in H2S-CO2environment [J]. J. Mater. Sci., 2009, 44: 4228
[21] Liu R K, Wang L X, Liu Z Y, et al. Effect of imidazoline corrosion inhibitor on stress corrosion cracking behavior of P110 steel in simulated annulus environment in CO2 injection wells [J]. Surf. Technol., 2015, (3): 25
[21] (刘然克, 王立贤, 刘智勇等. 咪唑啉类缓蚀剂对P110钢在CO2注入井环空环境中应力腐蚀行为的影响 [J]. 表面技术, 2015, (3): 25)
[22] Kittel J, Ropital F, Grosjean F, et al. Corrosion mechanisms in aqueous solutions containing dissolved H2S. Part 1: Characterisation of H2S reduction on a 316L rotating disc electrode [J]. Corros. Sci., 2013, 66: 324
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[4] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[5] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[7] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[8] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[9] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[10] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[11] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[12] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[13] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[14] 邓平,孙晨,彭群家,韩恩厚,柯伟. 堆芯结构材料辐照促进应力腐蚀开裂研究现状[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.
[15] 郭跃岭,韩恩厚,王俭秋. 锻后热处理对核级316LN不锈钢在沸腾MgCl2溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.