|
|
TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较 |
李清1,2, 张德平1,2, 李晓荣3, 王薇4, 孙宝壮5( ), 艾池1( ) |
1.东北石油大学油气井工程学院 大庆 163318 2.中国石油吉林油田公司二氧化碳开发公司 松原 138000 3.天津大港油田集团工程建设有限责任公司 天津 300280 4.中国石油吉林油田分公司油气工程研究院 松原 138000 5.北京科技大学腐蚀与防护中心 北京 100083 |
|
Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well |
LI Qing1,2, ZHANG Deping1,2, LI Xiaorong3, WANG Wei4, SUN Baozhuang5( ), AI Chi1( ) |
1. Northeast Petroleum University Oil and Gas Well Engineering College, Daqing 163318, China 2. Carbon Dioxide Development Company, Jilin Oil Field Company, Songyuan 138000, China 3. Tianjin Dagang Oilfield Group Engineering Construction Co. Ltd. , Tianjin 300280, China 4. Oil and Gas Engineering Research Institute, PetroChina Jilin Oilfield Company, Songyuan 138000, China 5. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
Qing LI,
Deping ZHANG,
Xiaorong LI,
Wei WANG,
Baozhuang SUN,
Chi AI.
Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 302-308.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2019.126
或
https://www.jcscp.org/CN/Y2020/V40/I4/302
|
[1] |
Li S L, Tang Y, Hou C X. Present situation and development trend of CO2 injection enhanced oil recovery technology [J]. Rsvr. Eval. Dvlopmt., 2019, 9(3): 1
|
[1] |
(李士伦, 汤勇, 侯承希. 注CO2提高采收率技术现状及发展趋势 [J]. 油气藏评价与开发, 2019, 9(3): 1)
|
[2] |
Zhang N, Wei M Z, Bai B J. Statistical and analytical review of worldwide CO2 immiscible field applications [J]. Fuel, 2018, 220: 89
|
[3] |
Liu Z Y, Li H, Jia Z J, et al. Failure analysis of P110 steel tubing in low-temperature annular environment of CO2 flooding wells [J]. Eng. Failure Anal., 2016, 60: 296
|
[4] |
Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
pmid: 26607528
|
[5] |
Zhang G A, Cheng Y F. On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production [J]. Corros. Sci., 2009, 51: 87
|
[6] |
Liu Z Y, Wang X Z, Liu R K, et al. Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H2S/CO2 annular environment [J]. J. Mater. Eng. Perform., 2014, 23: 1279
|
[7] |
Sun F L, Ren S, Li Z, et al. Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments [J]. Mater. Sci. Eng., 2017, A685: 145
|
[8] |
Liu Z Y, Zhao T L, Liu R K, et al. Influence factors on stress corrosion cracking of P110 tubing steel under CO2 injection well annulus environment [J]. J. Cent. South Univ., 2016, 23: 757
|
[9] |
Liu Q, Li Z, Liu Z Y, et al. Effects of H2S/HS- on stress corrosion cracking behavior of X100 pipeline steel under simulated sulfate-reducing bacteria metabolite conditions [J]. J. Mater. Eng. Perform., 2017, 26: 2763
|
[10] |
Liu R K, Zhang D P, Hao W K, et al. Effect of H2S partial pressure on stress corrosion cracking behavior of N80 oil casing steel in the environment of CO2 [J]. J. Sichuan Univ. (Eng. Sci. Ed.), 2013, 45(6): 196
|
[10] |
(刘然克, 张德平, 郝文魁等. H2S分压对N80油套管钢CO2环境下应力腐蚀开裂的影响 [J]. 四川大学学报 (工程科学版), 2013, 45(6): 196)
|
[11] |
Smanio V, Kittel J, Fregonese M, et al. Acoustic emission monitoring of wet H2S cracking of linepipe steels: Application to hydrogen-induced cracking and stress-oriented hydrogen-induced cracking [J]. Corros. Sci., 2011, 67: 065002-1
|
[12] |
Liu Z Y, Dong C F, Li X G. Stress corrosion cracking of 3Cr17Ni7Mo2SiN stainless steel in sulfide hydrogen solutions [J]. J. Mech. Eng., 2011, 47(6): 62
|
[12] |
(刘智勇, 董超芳, 李晓刚. 3Cr17Ni7Mo2SiN不锈钢硫化氢环境下的应力腐蚀开裂 [J]. 机械工程学报, 2011, 47(6): 62)
|
[13] |
Zhao J M, Duan H B, Jiang R J. Synergistic corrosion inhibition effect of quinoline quaternary ammonium salt and Gemini surfactant in H2S and CO2 saturated brine solution [J]. Corros. Sci., 2015, 91: 108
|
[14] |
Kang Y, Luo H. Research advance in inhibition of imidazoline corrosion inhibitor from CO2/H2S corrosion [J]. Adv. Fine Petrochem., 2011, 12(9): 55
|
[14] |
(康永, 罗红. 咪唑啉类缓蚀剂对CO2/H2S腐蚀抑制作用研究进展 [J]. 精细石油化工进展, 2011, 12(9): 55)
|
[15] |
Zhao J M, Zhao Q F, Jiang R J. Relationship between structure of imidazoline derivates with corrosion inhibition performance in CO2/H2S environment [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 142
|
[15] |
(赵景茂, 赵起锋, 姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究 [J]. 中国腐蚀与防护学报, 2017, 37: 142)
|
[16] |
López D A, Simison S N, de Sánchez S R. Inhibitors performance in CO2 corrosion: EIS studies on the interaction between their molecular structure and steel microstructure [J]. Corros. Sci., 2005, 47: 735
|
[17] |
Li J K, Zhao X L, Luan Y, et al. GB/T 13298-2015 Inspection methods of microstructure for metals [S]. Beijing: China Standard Press, 2016
|
[17] |
李继康, 赵晓丽, 栾燕等. GB/T 13298-2015 金属显微组织检验方法 [S]. 北京: 中国标准出版社, 2016)
|
[18] |
Zhao Y, Xie J F, Zeng G X, et al. Pourbaix diagram for HP-13Cr stainless steel in the aggressive oilfield environment characterized by high temperature, high CO2 partial pressure and high salinity [J]. Electrochim. Acta, 2019, 293: 116
|
[19] |
Fragiel A, Serna S, Pérez R. Electrochemical study of two microalloyed pipeline steels in H2S environments [J]. Int. J. Hydrogen Energy, 2005, 30: 1303
|
[20] |
Liu Z Y, Dong C F, Li X G, et al. Stress corrosion cracking of 2205 duplex stainless steel in H2S-CO2environment [J]. J. Mater. Sci., 2009, 44: 4228
|
[21] |
Liu R K, Wang L X, Liu Z Y, et al. Effect of imidazoline corrosion inhibitor on stress corrosion cracking behavior of P110 steel in simulated annulus environment in CO2 injection wells [J]. Surf. Technol., 2015, (3): 25
|
[21] |
(刘然克, 王立贤, 刘智勇等. 咪唑啉类缓蚀剂对P110钢在CO2注入井环空环境中应力腐蚀行为的影响 [J]. 表面技术, 2015, (3): 25)
|
[22] |
Kittel J, Ropital F, Grosjean F, et al. Corrosion mechanisms in aqueous solutions containing dissolved H2S. Part 1: Characterisation of H2S reduction on a 316L rotating disc electrode [J]. Corros. Sci., 2013, 66: 324
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|