Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (4): 325-331    DOI: 10.11902/1005.4537.2019.118
  研究报告 本期目录 | 过刊浏览 |
外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响
朱丽霞1,2(), 贾海东3, 罗金恒1, 李丽锋1, 金剑3, 武刚1, 胥聪敏4
1.中国石油集团石油管工程技术研究院 石油管材及装备材料服役行为与结构安全国家重点实验室 西安 710077
2.西安理工大学材料学院 西安 710048
3.中石油管道有限责任公司西部分公司 乌鲁木齐 830013
4.西安石油大学材料科学与工程学院 西安 710065
Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang
ZHU Lixia1,2(), JIA Haidong3, LUO Jinheng1, LI Lifeng1, JIN Jian3, WU Gang1, XU Congmin4
1. State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi'an 710077, China
2. School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
3. PetroChina West Pipeline Company, Urumchi 830013, China
4. School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
全文: PDF(8342 KB)   HTML
摘要: 

采用慢应变速率拉伸 (SSRT) 实验、SEM观察和动电位极化曲线测量等方法,研究了外加电位对X80管线钢母材及焊缝在轮南土壤模拟溶液中的应力腐蚀开裂 (SCC) 行为。结果表明,X80钢母材及焊缝在轮南土壤模拟溶液中均具有一定的应力腐蚀敏感性。在同一外加电位下,X80钢焊缝的SCC敏感性高于母材的;X80钢SCC敏感性及开裂机理受外加电位影响显著,在-500 mV外加阳极电位下,X80钢的SCC机理为裂尖阳极溶解-膜破裂机制,在-800 mV阴极电位以下 (-850,-1000和-1500 mV),氢脆作用在SCC过程中的影响明显增强,阴极析氢反应促进了钢的氢致开裂,导致X80钢SCC敏感性显著增加。

关键词 X80管线钢应力腐蚀开裂外加电位土壤环境腐蚀机理    
Abstract

The stress corrosion cracking (SCC) behavior of X80 pipeline steel and its weld joint in a simulated liquor of soil at Lunnan area of Xinjiang was studied by means of slow strain rate tensile tests (SSRT), SEM observation and potentiodynamic polarization tests. The results showed that both the X80 pipeline steel and its weld joint have obvious SCC susceptibilities, and the mode of fracture cracking propagation is transgranular cracking (TGSCC) under different applied potentials, and the SCC susceptibility of the weld seam is higher than that of the base metal under the same applied potential. SCC susceptibility and mechanism would vary with the applied potential. At -500 mV, the SCC of both X80 steel and its weld joint may be ascribed to the synergistic action of the anodic dissolution (AD) at crack tip and the rupture of passivation film. The SCC susceptibility of X80 pipeline steel increased markedly for potentials below -800 mV (-850, -1000 and -1500 mV) due to a strong hydrogen embrittlement (HE) effect on SCC process and hydrogen induced cracking promoted by cathodic hydrogen evolution reaction.

Key wordsX80 pipeline steel    stress corrosion cracking    applied potential    soil environment    corrosion mechanism
收稿日期: 2019-08-03     
ZTFLH:  TG172.4  
基金资助:国家重点研发计划(2016YFC0801204);陕西省自然科学基金(2019JQ-937)
通讯作者: 朱丽霞     E-mail: zhulx@cnpc.com.cn
Corresponding author: ZHU Lixia     E-mail: zhulx@cnpc.com.cn
作者简介: 朱丽霞,女,1980年生,博士生,高级工程师

引用本文:

朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
Lixia ZHU, Haidong JIA, Jinheng LUO, Lifeng LI, Jian JIN, Gang WU, Congmin XU. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 325-331.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.118      或      https://www.jcscp.org/CN/Y2020/V40/I4/325

图1  慢应变速率拉伸试样尺寸图
图2  X80管线钢母材及焊缝在轮南土壤模拟溶液中不同外加电位下的SSRT曲线
图3  X80管线钢母材及焊缝的断面收缩率损失系数Iψ
图4  X80管线钢母材及焊缝在空气中和不同外加电位下的断口SEM形貌
图5  X80管线钢母材及焊缝在空气中和不同外加电位下的断口侧面SEM形貌
图6  X80管线钢母材及焊缝在轮南土壤模拟溶液中的快慢扫极化曲线
[1] Yan M C, Xu J, Yu L B, et al. EIS analysis on stress corrosion initiation of pipeline steel under disbonded coating in near-neutral pH simulated soil electrolyte [J]. Corros. Sci., 2016, 110: 23
doi: 10.1016/j.corsci.2016.04.006
[2] Liu Z Y, Li X G, Du C W, et al. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment [J]. Corros. Sci., 2009, 51: 895
doi: 10.1016/j.corsci.2009.01.007
[3] Li H L, Ji L K, Tian W. Significant technical progress in the West-East gas pipeline projects-line one and line two [J]. Nat. Gas Ind., 2010, 30(4): 1
doi: 10.3787/j.issn.1000.0976.2010.04.001
[3] (李鹤林, 吉玲康, 田伟. 西气东输一、二线管道工程的几项重大技术进步 [J]. 天然气工业, 2010, 30(4): 1)
doi: 10.3787/j.issn.10000976.2010.04.001
[4] Mohd M H, Paik J K. Investigation of the corrosion progress characteristics of offshore subsea oil well tubes [J]. Corros. Sci., 2013, 67: 130
doi: 10.1016/j.corsci.2012.10.008
[5] Du Y F. Hua Jianmin: By the end of the 12th Five Year Plan, the total mileage of our long oil and gas pipeline exceeded 100000 km [DB/OL]. (2010-09-25).
[5] (杜燕飞. 华建敏: 十二五末我长输油气管道总里程超10万公里 [DB/OL]. (2010-09-25) . )
[6] Dang D N, Lanarde L, Jeannin M, et al. Influence of soil moisture on the residual corrosion rates of buried carbon steel structures under cathodic protection [J]. Electrochim. Acta, 2015, 176: 1410
doi: 10.1016/j.electacta.2015.07.097
[7] Caleyo F, Valor A, Alfonso L, et al. Bayesian analysis of external corrosion data of non-piggable underground pipelines [J]. Corros. Sci., 2015, 90: 33
doi: 10.1016/j.corsci.2014.09.012
[8] People'sNetwork. Intelligent construction of oil and gas pipeline to be speeded up [N]. China Energy News, 2019-03-29 (19)
[8] 人民网. 油气管道智能化建设待提速 [N]. 中国能源报, 2019-03-29 (19))
[9] Wang X Q, Wang B Q, Wang B, et al. The current situation and development trend of China's Long distance natural gas pipeline [J]. Petrol. Plann. Eng., 2018, 29(5): 1
[9] (王小强, 王保群, 王博等. 我国长输天然气管道现状及发展趋势 [J]. 石油规划设计, 2018, 29(5): 1)
[10] China Economic Network. The scale of China's oil and gas pipeline network will reach 240000 km by the year of 2025 [DB/OL]. (2017-07-12).
[10] (中国经济网. 2025年我国油气管网规模将达到24万公里 [DB/OL]. (2017-07-12). )
[11] Bi Z Y, Liu H Z, Niu H. X80 pipe for the second west east gas pipeline and its welding process [J]. Weld. Join., 2011, (11): 47
[11] (毕宗岳, 刘海璋, 牛辉. 西气东输二线用X80管材及其焊接工艺 [J]. 焊接, 2011, (11): 47)
[12] Yan M C, Sun C, Xu J, et al. Role of Fe oxides in corrosion of pipeline steel in a red clay soil [J]. Corros. Sci., 2014, 80: 309
doi: 10.1016/j.corsci.2013.11.037
[13] Fang B Y, Atrens A, Wang J Q, et al. Review of stress corrosion cracking of pipeline steels in "low" and "high" pH solutions [J]. J. Mater. Sci., 2003, 38: 127
doi: 10.1023/A:1021126202539
[14] Chen X, Li X G, Du C W, et al. Effect of cathodic protection on corrosion of pipeline steel under disbonded coating [J]. Corros. Sci., 2009, 51: 2242
doi: 10.1016/j.corsci.2009.05.027
[15] Javidi M, Horeh S B. Investigating the mechanism of stress corrosion cracking in near-neutral and high pH environments for API 5L X52 steel [J]. Corros. Sci., 2014, 80: 213
doi: 10.1016/j.corsci.2013.11.031
[16] Yang D P, Xu C M, Luo J H, et al. Stress corrosion cracking behavior of X80 pipeline steel with design factor of 0.8 in near-neutral pH value solutions [J]. J. Mater. Eng., 2015, 43: 89
[16] (杨东平, 胥聪敏, 罗金恒等. 0.8设计系数用X80管线钢在近中性pH溶液中的应力腐蚀开裂行为 [J]. 材料工程, 2015, 43: 89)
[17] Cui Z Y, Liu Z Y, Wang L W, et al. Effect of plastic deformation on the electrochemical and stress corrosion cracking behavior of X70 steel in near-neutral pH environment [J]. Mater. Sci. Eng., 2016, A677: 259
[18] Xu C M, Luo J H, Zhou Y, et al. Effect of SRB on stress corrosion cracking of X100 pipeline steel in northwest saline soil [J]. Trans. Mater. Heat Treat., 2016, 37(5): 82
[18] (胥聪敏, 罗金恒, 周勇等. SRB对X100管线钢在西北盐渍土壤中应力腐蚀开裂行为的影响 [J]. 材料热处理学报, 2016, 37(5): 82)
[19] Luo J H, Xu C M, Yang D P. Stress corrosion cracking of X100 pipeline steel in acid soil medium with SRB [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 321
[19] (罗金恒, 胥聪敏, 杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为 [J]. 中国腐蚀与防护学报, 2016, 36: 321)
doi: 10.11902/1005.4537.2015.177
[20] Liu Z Y, Wang C P, Du C W, et al. Effect of applied potentials on stress corrosion cracking of X80 pipeline steel in simulated YingTan soil solution [J]. Acta Metall. Sin., 2011, 47: 1434
doi: 10.3724/SP.J.1037.2011.00046
[20] (刘智勇, 王长朋, 杜翠薇等. 外加电位对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响 [J]. 金属学报, 2011, 47: 1434)
doi: 10.3724/SP.J.1037.2011.00046
[21] Asher S L, Leis B N, Colwell J, et al. Investigating a mechanism for transgranular stress corrosion cracking on buried pipelines in near-neutral pH environments [J]. Corrosion, 2007, 63: 932
doi: 10.5006/1.3278311
[22] Yuan H Z, Liu Z Y, Li X G, et al. Influence of applied potential on the stress corrosion behavior of X90 pipeline steel and its weld joint in simulated solution of near neutral soil environment [J]. Acta Metall. Sin., 2017, 53: 797
doi: 10.11900/0412.1961.2016.00530
[22] (苑洪钟, 刘智勇, 李晓刚等. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响 [J]. 金属学报, 2017, 53: 797)
doi: 10.11900/0412.1961.2016.00530
[23] Chu W Y. Fracture and Environmental Fracture [M]. Beijing: Science Press, 2000: 109
[23] (褚武扬. 断裂与环境断裂 [M]. 北京: 科学出版社, 2000: 109)
[24] Egbewande A, Chen W X, Eadie R, et al. Transgranular crack growth in the pipeline steels exposed to near-neutral pH soil aqueous solutions: Discontinuous crack growth mechanism [J]. Corros. Sci., 2014, 83: 343
doi: 10.1016/j.corsci.2014.02.032
[25] Cheng Y F, Niu L. Mechanism for hydrogen evolution reaction on pipeline steel in near-neutral pH solution [J]. Electrochem. Commun., 2007, 9: 558
doi: 10.1016/j.elecom.2006.10.035
[26] Marshakov A I, Ignatenko V E, Bogdanov R I, et al. Effect of electrolyte composition on crack growth rate in pipeline steel [J]. Corros. Sci., 2014, 83: 209
doi: 10.1016/j.corsci.2014.02.012
[27] Barbalat M, Lanarde L, Caron D, et al. Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection [J]. Corros. Sci., 2012, 55: 246
doi: 10.1016/j.corsci.2011.10.031
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[5] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[6] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[7] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[8] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[10] 王希靖, 王博士, 杨超, 杨艳, 沈斌. 纯Ni母材及焊缝在熔融Na2SO4-K2SO4中热腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[11] 夏大海, 宋诗哲, 王吉会, 高志明, 胡文彬. 食品包装用镀锡薄钢板的腐蚀机理研究进展[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[12] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[13] 任继栋,高荣杰,张宇,刘勇,丁甜. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
[14] 张康南,吴明,谢飞,王丹,伞宇曦,江峰. 磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 148-154.
[15] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.