Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (2): 89-95    DOI: 10.11902/1005.4537.2018.186
  综合评述 本期目录 | 过刊浏览 |
镁合金应力腐蚀开裂行为研究进展
王保杰1,栾吉瑜1,王士栋2,3,许道奎2,3()
1. 沈阳理工大学环境与化学工程学院 沈阳 110159
2. 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
3. 中国科学院金属研究所 环境腐蚀研究中心 沈阳 110016
Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys
Baojie WANG1,Jiyu LUAN1,Shidong WANG2,3,Daokui XU2,3()
1. School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
2. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(3293 KB)   HTML
摘要: 

系统总结了镁合金的应力腐蚀开裂行为及其微观失效机制的研究进展,重点介绍了阳极溶解、机械载荷、氢脆效应等对裂纹开裂模式的影响和作用规律,以及提高镁合金抗应力腐蚀开裂能力的处理方法及其作用机制;指出目前研究中存在的问题,并提出未来的研究重点和发展方向。

关键词 镁合金应力腐蚀开裂局部腐蚀氢致开裂腐蚀机制    
Abstract

In this paper, the stress corrosion cracking (SCC) behavior of Mg-alloys and the relevant failure mechanism were systematically summarized. Moreover, the effect of anodic dissolution, mechanical loading and hydrogen embrittlement on the SCC cracking modes was described. The measures for improving the SCC resistance of Mg-alloys were also introduced. Finally, the existing problems in the current study, the research emphasis and direction in the future are also pointed out.

Key wordsmagnesium alloy    stress corrosion cracking    localized corrosion    hydrogen-induced cracking    corrosion mechanism
收稿日期: 2018-12-24     
ZTFLH:  TG172.5  
基金资助:国家自然科学基金(51701129);国家自然科学基金(51871211);沈阳理工大学博士后启动基金(10500010006)
通讯作者: 许道奎     E-mail: dkxu@imr.ac.cn
Corresponding author: Daokui XU     E-mail: dkxu@imr.ac.cn
作者简介: 王保杰,女,1980年生,讲师

引用本文:

王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
Baojie WANG, Jiyu LUAN, Shidong WANG, Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 89-95.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.186      或      https://www.jcscp.org/CN/Y2019/V39/I2/89

图1  膜破裂-溶解导致裂纹的连续扩展和脆性区域在外力作用下发生解理开裂[3]
图2  ZE41镁合金在0.5%NaCl溶液和蒸馏水中的拉伸断口形貌[11]
图3  锻造态和T4态下Mg-Zn-Y-Zr镁合金的应力-应变曲线[66]
[1] Zhu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion [M]. Beijing: Science Press, 2013
[1] 褚武扬, 乔利杰, 李金许等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013
[2] Choudhary L, Singh Raman R K. Mechanical integrity of magnesium alloys for biomedical applications [A].
[2] In: Tsn S N, Park II S, Lee M H. Surface Modification of Magnesium and its Alloys for Biomedical Applications.Volume 1: Biological Interactions, Mechanical Properties and Testing [M]. Cambrige: Woodhead Publishing, 2015: 179
[3] Winzer N, Atrens A, Song G L, et al. A critical review of the stress corrosion cracking (SCC) of magnesium alloys [J]. Adv. Eng. Mater., 2005, 7: 659
[4] Sieradzki K, Newman R C. Brittle behavior of ductile metals during stress-corrosion cracking [J]. Philos. Mag., 1985, 51A: 95
[5] Parkins R N. Predictive approaches to stress corrosion cracking failure [J]. Corros. Sci., 1980, 20: 147
[6] Winzer N, Atrens A, Dietzel W, et al. Characterisation of stress corrosion cracking (SCC) of Mg-Al alloys [J]. Mater. Sci. Eng., 2008, A488: 339
[7] Winzer N, Atrens A, Dietzel W, et al. Comparison of the linearly increasing stress test and the constant extension rate test in the evaluation of transgranular stress corrosion cracking of magnesium [J]. Mater. Sci. Eng., 2008, A472: 97
[8] Winzer N, Atrens A, Dietzel W, et al. Fractography of stress corrosion cracking of Mg-Al alloys [J]. Metall. Mater. Trans., 2008, 39A: 1157
[9] Ben-Hamu G, Eliezer D, Dietzel W, et al. Stress corrosion cracking of new Mg-Zn-Mn wrought alloys containing Si [J]. Corros. Sci., 2008, 50: 1505
[10] Chen J, Ai M R, Wang J Q, et al. Stress corrosion cracking behaviors of AZ91 magnesium alloy in deicer solutions using constant load [J]. Mater. Sci. Eng., 2009, A515: 79
[11] Kannan M B, Dietzel W, Blawert C, et al. Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31A) compared with AZ80 [J]. Mater. Sci. Eng., 2008, A480: 529
[12] Ebtehaj K, Hardie D, Parkins R N. The influence of chloride-chromate solution composition on the stress-corrosion cracking of a Mg-Al alloy [J]. Corros. Sci., 1988, 28: 811
[13] Stampella R S, Procter R P M, Ashworth V. Environmentally-induced cracking of magnesium [J]. Corros. Sci., 1984, 24: 325
[14] Wearmouth W R, Dean G P, Parkins R N. Role of stress in the stress corrosion cracking of a Mg-Al alloy [J]. Corrosion, 1973, 29: 251
[15] Chakrapani D G, Pugh E N. Transgranular SCC of a Mg-Al alloy: Crystallographic, fractographic and acoustic-emission studies [J]. Metall. Trans., 1975, 6A: 1155
[16] Chakrapani D G, Pugh E N. Hydrogen embrittlement in a Mg-Al alloy [J]. Metall. Trans., 1976, 7A: 173
[17] Meletis E I, Hochman R F. Crystallography of stress corrosion cracking in pure magnesium [J]. Corrosion, 1984, 40: 39
[18] Kannan M B, Dietzel W. Pitting-induced hydrogen embrittlement of magnesium-aluminium alloy [J]. Mater. Des., 2012, 42: 321
[19] Curioni M. The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging [J]. Electrochim. Acta, 2014, 120: 284
[20] Singh Raman R K, Jafari S, Harandi S E. Corrosion fatigue fracture of magnesium alloys in bioimplant applications: A review [J]. Eng. Fract. Mech., 2015, 137: 97
[21] Jafari S, Harandi S E, Singh Raman R K. A review of stress-corrosion cracking and corrosion fatigue of magnesium alloys for biodegradable implant applications [J]. JOM, 2015, 67: 1143
[22] Lynch S. Hydrogen embrittlement phenomena and mechanisms [J]. Corros. Rev., 2012, 30: 105
[23] Knott J F. Fracture toughness and hydrogen-assisted crack growth in engineering alloys [A].
[23] In: Thompson A W, Moody N R. Hydrogen Effects in Materials [M]. New York: Wiley, 1994: 385
[24] Kannan M B, Dietzel W, Zeng R, et al. A study on the SCC susceptibility of friction stir welded AZ31 Mg sheet [J]. Mater. Sci. Eng., 2007, A460/461: 243
[25] Kuramoto S, Araki I, Kanno M. Hydrogen behavior during stress-corrosion cracking of an AZ31 magnesium alloy [J]. J. Jpn. Inst. Light Met., 2001, 51: 397
[26] Lynch S P, Trevena P. Stress corrosion cracking and liquid metal embrittlement in pure magnesium [J]. Corrosion, 1988, 44: 113
[27] Winzer N, Atrens A, Dietzel W, et al. Evaluation of the delayed hydride cracking mechanism for transgranular stress corrosion cracking of magnesium alloys [J]. Mater. Sci. Eng., 2007, A466: 18
[28] Makar G L, Kruger J, Sieradzki K. Stress corrosion cracking of rapidly solidified magnesium-aluminum alloys [J]. Corros. Sci., 1993, 34: 1311
[29] Moody N R, Thompson A W. Hydrogen Effects on Material Behavior [M]. Warrendale, PA: The Metallurgical Society Inc., 1990
[30] Gangloff R P. Hydrogen-assisted cracking [A].
[30] In: Milne I, Ritchie R O, Karihaloo B. Comprehensive Structural Integrity [M]. Oxford: Pergamon, 2003: 31
[31] Lynch S. Mechanisms of hydrogen assisted cracking-a review [A]. Proceeding of the International Conference on Hydrogen Effects on Material Behaviour and Corrosion Deformation Interactions [C]. Moran, WY, 2003: 449
[32] Kappes M, Iannuzzi M, Carranza R M. Hydrogen embrittlement of magnesium and magnesium alloys: A review [J]. J. Electrochem. Soc., 2013, 160: C168
[33] Cao F Y, Shi Z M, Song G L, et al. Stress corrosion cracking of several solution heat-treated Mg-X alloys [J]. Corros. Sci., 2015, 96: 121
[34] Uematsu Y, Kakiuchi T, Nakajima M. Stress corrosion cracking behavior of the wrought magnesium alloy AZ31 under controlled cathodic potentials [J]. Mater. Sci. Eng., 2012, A531: 171
[35] Chen J, Wang J Q, Han E-H, et al. Effect of hydrogen on stress corrosion cracking of magnesium alloy in 0.1 M Na2SO4 solution [J]. Mater. Sci. Eng., 2008, A488: 428
[36] Lynch S, Moody N, Thompson A, et al. Hydrogen effects on material behaviour and corrosion deformation interactions [A]. Proceedings of the International Conference Hydrogen Effects on Material Behaviour and Corrosion Deformation Interactions [C]. Warrendale, 2003: 22
[37] Choudhary L, Singh Raman R K. Magnesium alloys as body implants: Fracture mechanism under dynamic and static loadings in a physiological environment [J]. Acta Biomater., 2012, 8: 916
[38] Williams G, ap Llwyd Dafydd H, Grace R. The localised corrosion of Mg alloy AZ31 in chloride containing electrolyte studied by a scanning vibrating electrode technique [J]. Electrochim. Acta, 2013, 109: 489
[39] Yang Y, Scenini F, Curioni M. A study on magnesium corrosion by real-time imaging and electrochemical methods: Relationship between local processes and hydrogen evolution [J]. Electrochim. Acta, 2016, 198: 174
[40] Chmiela B, Mo?cicki A, Sozańska M. Investigation of stress corrosion cracking in magnesium alloys [J]. Solid State Phenom., 2013, 211: 89
[41] Chu W Y, Hsiao C M, Li S Q. Hydrogen induced delayed plasticity and cracking [J]. Scripta Metall. Mater, 1979, 13: 1063
[42] Myers S M, Baskes M I, Birnbaum H K, et al. Hydrogen interactions with defects in crystalline solids [J]. Rev. Mod. Phys., 1992, 64: 559
[43] Chakrapani D G, Pugh E N. On the fractography of transgranular stress corrosion failures in a Mg-Al alloy [J]. Corrosion, 1975, 31: 247
[44] Casajús P, Winzer N. Intergranular stress corrosion crack propagation in hot-rolled AZ31 Mg alloy sheet [J]. Mater. Sci. Eng., 2014, A602: 58
[45] Chen J, Wang J Q, Han E-H, et al. States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution [J]. Corros. Sci., 2008, 50: 1292
[46] Kannan M B, Dietzel W, Blawert C, et al. Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31A) compared with AZ80 [J]. Mater. Sci. Eng., 2008, A480: 529
[47] Guo K W. A review of magnesium/magnesium alloys corrosion and its protection [J]. Recent Pat. Corros. Sci., 2010, 2: 13
[48] Zhang E L, He W W, Du H, et al. Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloy with low Zn content [J]. Mater. Sci. Eng., 2008, A488: 102
[49] Shi F, Yu Y C, Guo X F, et al. Corrosion behavior of as-cast Mg68Zn28Y4 alloy with I-phase [J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 1093
[50] Wang S D, Xu D K, Chen X B, et al. Effect of heat treatment on the corrosion resistance and mechanical properties of an as-forged Mg-Zn-Y-Zr alloy [J]. Corros. Sci., 2015, 92: 228
[51] Song Y W, Shan D Y, Chen R S, et al. Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy [J]. Corros. Sci., 2010, 52: 1830
[52] Song Y W, Han E-H, Shan D Y, et al. The role of second phases in the corrosion behavior of Mg-5Zn alloy [J]. Corros. Sci., 2012, 60: 238
[53] Popov I, Starosvetsky D, Shechtman D. Initial stages of corrosion within Mg-Zn-Y-Zr alloy in 1 g/L NaCl solution [J]. J. Mater. Sci., 2000, 35: 1
[54] Pardo A, Merino M C, Coy A E, et al. Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media [J]. Electrochim. Acta, 2008, 53: 7890
[55] Tang W N, Chen R S, Zhou J, et al. Effects of ECAE temperature and billet orientation on the microstructure, texture evolution and mechanical properties of a Mg-Zn-Y-Zr alloy [J]. Mater. Sci. Eng., 2009, A499: 404
[56] Tang W N, Chen R S, Han E-H. Superplastic behaviors of a Mg-Zn-Y-Zr alloy processed by extrusion and equal channel angular extrusion [J]. J. Alloy. Compd., 2009, 477: 636
[57] Wu Q, Zhu S J, Wang L G, et al. The microstructure and properties of cyclic extrusion compression treated Mg-Zn-Y-Nd alloy for vascular stent application [J]. J. Mech. Behav. Biomed. Mater., 2012, 8: 1
[58] Liu X B, Shan D Y, Song Y W, et al. Effects of heat treatment on corrosion behaviors of Mg-3Zn magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1345
[59] Liang S Q, Guan D K, Tan X P. The relation between heat treatment and corrosion behavior of Mg-Gd-Y-Zr alloy [J]. Mater. Des., 2011, 32: 1194
[60] Wang S D, Xu D K, Wang B J, et al. Influence of phase dissolution and hydrogen absorption on the stress corrosion cracking behavior of Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2018, 142: 185
[61] Bhuiyan M S, Mutoh Y, Murai T, et al. Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments [J]. Int. J. Fatigue, 2008, 30: 1756
[62] Nan Z Y, Ishihara S, Goshima T. Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution [J]. Int. J. Fatigue, 2008, 30: 1181
[63] Sajuri Z B, Miyashita Y, Mutoh Y. Effects of humidity and temperature on the fatigue behaviour of an extruded AZ61 magnesium alloy [J]. Fatigue Fract. Eng. Mater. Stuct., 2005, 28: 373
[64] Rozali S, Mutoh Y, Nagata K. Effect of frequency on fatigue crack growth behavior of magnesium alloy AZ61 under immersed 3.5 mass% NaCl environment [J]. Mater. Sci. Eng., 2011, A528: 2509
[65] Tsao L C. Stress-corrosion cracking susceptibility of AZ31 alloy after varied heat-treatment in 3.5wt.%NaCl solution [J]. Int. J. Mater. Res., 2010, 101: 1166
[66] Wang S D, Xu D K, Wang B J, et al. Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg-Zn-Y-Zr alloy [J]. Sci. Rep., 2016, 6: 29471
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[3] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[4] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[5] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[6] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[7] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[8] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[10] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[11] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[12] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[13] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[14] 史伟宁,杨树峰,李京社. 不锈钢中诱发局部腐蚀的贫Cr区研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 281-290.
[15] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.