Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (1): 54-61    DOI: 10.11902/1005.4537.2017.006
  本期目录 | 过刊浏览 |
核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为
朱若林1,2, 张利涛1, 王俭秋1(), 张志明1, 韩恩厚1
1 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2 中核武汉核电运行技术股份有限公司 武汉 430223
Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water
Ruolin ZHU1,2, Litao ZHANG1, Jianqiu WANG1(), Zhiming ZHANG1, En-Hou HAN1
1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 China Nuclear Power Operation Technology Corporation, LTD, Wuhan 430223, China
全文: PDF(4076 KB)   HTML
摘要: 

采用直流电位降 (DCPD) 技术,实现了在模拟核电一回路高温高压水环境中对核级316LN不锈钢 (SS) 弯管材料应力腐蚀裂纹扩展的实时监测,同时利用扫描电子显微镜 (SEM) 和电子背散射衍射 (EBSD) 技术对试样断口及裂纹扩展路径进行观察。结果表明,在270~330 ℃范围,316LN SS弯管材料在高温高压水环境中的应力腐蚀裂纹扩展速率随着温度的升高而单调增加,其裂纹扩展的表观激活能 (Eaae) 为52 kJ/mol。硼锂溶液对裂纹扩展速率有一定的影响,其影响程度和溶液在特定温度下的pH值有关。应力腐蚀断口呈现典型的沿晶开裂形貌,且裂纹沿着大角度晶界扩展。

关键词 奥氏体SS高温高压水应力腐蚀裂纹扩展速率    
Abstract

The stress corrosion crack propagation behavior of the elbow pipe of nuclear grade 316LN stainless steel (SS) in high temperature high pressure water was studied by means of direct current potential drop (DCPD) method coupled with in-situ measuring the crack length of the compact tension (CT) specimen, as well as scanning electron microscope (SEM) and electron back scattering diffraction (EBSD) technique. Results indicated that the crack growth rate monotonically increased with the increase of temperature ranging from 270 ℃ to 330 ℃, and the crack growth rate at 330 ℃ was 1.7 fold of that at 270 ℃. The apparent activation energy (Eaae) for stress corrosion crack propagation of 316LN SS was 52 kJ/mol. The crack growth rate of 316LN SS was affected by the solution with dissolved 1500 mg/L B+2.3 mg/L Li in high temperature high pressure water and the influence extent depended on the pH of the solution. The results of the crack growth rates could provide data support for the plant safety evaluation and remnant life prediction. Intergranular stress corrosion cracking was observed for the fractured surface of 316LN stainless steel tested in pressurized high temperature water. The crack propagated along with the large angle grain boundaries instead of the coincidence site lattice (CSL) boundaries and lots of secondary cracks were observed. Moreover, the residual strain at the grain boundary was larger than that of the interior of grains.

Key wordsaustenite stainless steel    high temperature high pressure water    stress corrosion cracking    crack growth rate
收稿日期: 2017-01-09     
ZTFLH:  TG172  
基金资助:国家重点研发计划 (2017YFB0702100),国家自然科学基金 (51771211),中国科学院前沿科学重点研究项目(QYZDY-SSW-JSC012) 和中国科学院重点部署项目 (ZDRW-CN-2017-1)
作者简介: 作者简介 朱若林,男,1990年生,博士生

引用本文:

朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 54-61.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.006      或      https://www.jcscp.org/CN/Y2018/V38/I1/54

图1  316LN SS弯管和紧凑拉伸试样取样示意图
图2  1/2T CT试样尺寸示意图
Step Test condition Duration / h a / μm CGR / mms-1
SCC#1 Pure water, 310 ℃ 500 234.1 2.0×10-7
SCC#2 B / Li solution, 310 ℃ 262 195.7 2.2×10-7
SCC#3 B / Li solution, 270 ℃ 221 88.0 9.1×10-8
SCC#4 B / Li solution, 290 ℃ 464 148.6 9.9×10-8
SCC#5 B / Li solution, 330 ℃ 200 185.0 2.5×10-7
SCC#6 Pure water, 330 ℃ 400 131.4 8.6×10-8
表1  316LN SS在高温高压水中 (270~330 ℃) 的应力腐蚀实验条件和裂纹扩展速率
图3  316LN SS在高温高压水 (310 ℃) 中腐蚀疲劳裂纹长度随时间变化曲线
图4  316LN SS在高温高压水 (270~310 ℃) 中应力腐蚀裂纹长度随时间变化曲线
图5  300 ℃下Ni在铁-铬-镍三元体系中的Pourbaix图[20]
图6  溶液温度 (270~310 ℃) 对316LN SS应力腐蚀裂纹扩展速率的影响
图7  316LN SS经过高温高压水 (270~310 ℃) 应力腐蚀实验之后样品断口的宏观形貌
图8  316LN SS经过高温高压水 (270~310 ℃) 应力腐蚀实验之后样品断口的SEM像
图9  316LN SS经过高温高压水 (270~310 ℃) 应力腐蚀实验之后样品裂纹扩展路径的SEM观测
图10  316LN SS经过高温高压水 (270~310 ℃) 应力腐蚀实验之后裂纹扩展路径的EBSD观测
[1] Zhang L T.Stress corrosion crack growth behavior of nuclear grade 316L stainless steel in pressurized high temperature water [D]. Shenyang: Institute of Metal Research,Chinese Academy of Sciences, 2014(张利涛. 核级316L不锈钢在高温高压水环境中的应力腐蚀裂纹扩展行为研究 [D]. 沈阳: 中国科学院金属研究所, 2014)
[2] Arioka K, Yamada T, Terachi T, et al.Cold work and temperature dependence of stress corrosion crack growth of austenitic stainless steels in hydrogenated and oxygenated high-temperature water[J]. Corrosion, 2007, 63: 1114
[3] Zhang L T, Wang J Q.Effect of temperature and loading mode on environmentally assisted crack growth of a forged 316L SS in oxygenated high-temperature water[J]. Corros. Sci., 2014, 87: 278
[4] Peng Q J, Zhang Z M, Wang J Q, et al.Influence of dissolved hydrogen on oxidation of stainless steel 316L in simulated PWR primary water[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 217(彭青姣, 张志明, 王俭秋等. 溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32: 217)
[5] Sun H, Wu X Q, Han E-H, et al.Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water[J]. Corros. Sci., 2012, 59: 334
[6] Guo Y L, Han E-H, Wang J Q. Effects of forging and heat treatments on stress corrosion behavior of 316LN stainless steel in high temperature caustic solution [J]. Acta Metall. Sin., 2015,51: 659|(郭跃岭, 韩恩厚, 王俭秋. 锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响[J]. 金属学报, 2015, 51: 659)
[7] Ming H L, Zhang Z M, Xiu P Y, et al.Microstructure, residual strain and stress corrosion cracking behavior in 316L heat-affected zone[J]. Acta Metall. Sin.(Engl. Lett.), 2016, 29: 848
[8] Chen J J, Lu Z P, Xiao Q, et al.The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments[J]. J. Nucl. Mater., 2016, 472: 1
[9] Du D H, Chen K, Yu L, et al.SCC crack growth rate of cold worked 316L stainless steel in PWR environment[J]. J. Nucl. Mater., 2015, 456: 228
[10] Zhang L T, Wang J Q.Stress corrosion crack propagation behavior of domestic forged nuclear grade 316L stainless steel in high temperature and high pressure water[J]. Acta Metall. Sin., 2013, 49: 911(张利涛, 王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49: 911)
[11] Zhang L T, Wang J Q.Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment[J]. J. Nucl. Mater., 2014, 446: 15
[12] Tice D R, Nouraei S, Mottershead K J, et al.Effects of cold work and sensitization on stress corrosion crack propagation of austenitic stainless steels in PWR primary coolant conditions [A]. 14th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems[C]. Virginia Beach, VA: 2009: 158
[13] Andresen P L, Ford F P.Fundamental modeling of environmental cracking for improved design and lifetime evaluation in BWRs[J]. Int. J. Pressure Vessels Pip., 1994, 59: 61
[14] Marin M L, Redondo M S, Velasco G, et al.Crack growth rate of hardened austenitic stainless steels in BWR and PWR environments [A]. 11th Int. Conf. Environmental Degradation of Materials in Nuclear Systems[C]. Stevenson, WA: 2003: 845
[15] Zhu R L, Wang J Q, Zhang L T, et al.Stress corrosion cracking of 316L HAZ for 316L stainless steel/ Inconel 52M dissimilar metal weld joint in simulated primary water[J]. Corros. Sci., 2016, 112: 373
[16] Qian D Z, Xie X J.Water quality engineering of nuclear power plant [M]. Beijing: China Electric Power Press, 2008(钱达中, 谢学军. 核电站水质工程 [M]. 北京: 中国电力出版社, 2008)
[17] Lu Z P, Shoji T, Takeda Y, et al.Transient and steady state crack growth kinetics for stress corrosion cracking of a cold worked 316L stainless steel in oxygenated pure water at different temperatures[J]. Corros. Sci., 2008, 50: 561
[18] Andresen P L, Emigh P W, Morra M M, et al.Effects of PWR primary water chemistry and deaerated water on SCC [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Salt Lake City, UT: TMS, 2006: 989
[19] Wang J Q, Li X H, Huang F, et al.Comparison of corrosion resistance of UNS N06690TT and UNS N08800SN in simulated primary water with various concentrations of dissolved oxygen[J]. Corrosion, 2014, 70: 598
[20] Beverskog B, Puigdomenech I.Pourbaix diagrams for the ternary system of Iron-Chromium-Nickel[J]. Corrosion, 1999, 55: 1077
[21] Sennour M, Marchetti L, Martin F, et al.A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor[J]. J. Nucl. Mater., 2010, 402: 147
[22] Lv Z P, Takeda Y, Shoji T.Some fundamental aspects of thermally activated processes involved in stress corrosion cracking in high temperature aqueous environments[J]. J. Nucl. Mater., 2008, 383: 92
[23] Andresen P L, Morra M M.Stress corrosion cracking of stainless steels and nickel alloys in high-temperature water[J]. Corrosion, 2008, 64(1): 15
[24] Yang H, Xia S, Zhang Z L, et al.Improving the intergranular corrosion resistance of the weld heat-affected zone by grain boundary engineering in 304 austenitic stainless steel[J]. Acta Metall. Sin., 2015, 51: 333(杨辉, 夏爽, 张子龙等. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J]. 金属学报, 2015, 51: 333)
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[4] 李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[5] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[6] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[8] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[10] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[11] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[12] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[13] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[14] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[15] 向超,王家贞,付华萌,韩恩厚,张海峰,王俭秋,张志明. 几种高熵合金在核电高温高压水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(2): 107-112.