Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (6): 517-522    DOI: 10.11902/1005.4537.2017.165
  本期目录 | 过刊浏览 |
冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展
张克乾,胡石林(),唐占梅,张平柱
1. 中国原子能科学研究院 北京 102413
Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water
Keqian ZHANG,Shilin HU(),Zhanmei TANG,Pingzhu ZHANG
1. China Institute of Atomic Energy, Beijing 102413, China
全文: PDF(1245 KB)   HTML
摘要: 

总结了冷加工对核电结构材料应力腐蚀 (SCC) 裂纹扩展速率 (CGR)、裂纹扩展方向的影响以及温度和溶解氢对冷加工材料应力腐蚀的影响,分析了冷加工影响SCC敏感性的机理,并对未来的研究趋势做了展望。冷轧加工使反应堆结构材料晶粒变形,晶界处产生片状局部应力区,晶粒内部出现变形带,材料中产生大量的位错和空位缺陷,导致应力腐蚀CGR变大;晶粒变形带的局部氧化会对应力腐蚀类型和裂纹扩展方向产生影响;不同温度下缺陷的移动影响了裂纹的扩展。未来应重点针对实际工况下冷加工材料的应力腐蚀行为和机理等方面开展研究。

关键词 冷加工应力腐蚀裂纹扩展速率局部应力空位缺陷    
Abstract

The influence of cold work on the stress corrosion cracking (SCC), namely the crack growth rate (CGR) and the crack propagation orientations of the nuclear structural materials and especially the effect of temperature on the stress corrosion cracking, of the cold-worked steels and nickel base alloys were summarized. The effect cold-working processing on the SCC sensitivity was analyzed. The future trends of R&D in the field was also expounded. The cold rolling process induced elongated grains along the rolling direction, and the lamellar-like local strain areas generated at grain boundaries. Some deformation bands and a large number of dislocations and vacancies are formed inside the grain due to cold rolling, resulting in the increase of the stress corrosion cracking CGR. The localized oxidation of the grain deformation bands will affect the type of stress corrosion and the direction of crack propagation. The movement of defects at different temperatures will change the CGR of cracks. The future research should focus on the mechanism of stress corrosion cracking of old worked materials and the SCC behavior of cold-worked materials under actual service conditions.

Key wordscold worked    stress corrosion cracking    crack growth rate    local strain    vacancy defect
收稿日期: 2017-10-11     
ZTFLH:  TG172.5  
通讯作者: 胡石林     E-mail: husl@ciae.cn
Corresponding author: Shilin HU     E-mail: husl@ciae.cn
作者简介: 张克乾,男,1991年生,博士生

引用本文:

张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
Keqian ZHANG, Shilin HU, Zhanmei TANG, Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water. Journal of Chinese Society for Corrosion and protection, 2018, 38(6): 517-522.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.165      或      https://www.jcscp.org/CN/Y2018/V38/I6/517

图1  轧制冷加工示意图[26]
图2  冷加工304L不锈钢裂纹扩展方向示意图[35]
图3  冷加工316SS SCC裂纹扩展速率随温度的变化[20,36,37]
图4  冷加工690TT合金SCC裂纹扩展速率随温度的变化[22]
[1] Tsubota M,Kanazawa Y,Inoue H.The effect of cold worked on the SCC susceptibility of austenitic stainless steels[A].Proceedings of the 7th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor[C].Breckenridge Colorado,1995:519
[2] Kanazawa Y,Tsubota M.Stress corrosion cracking of cold worked stainless steel in high temperature water[R].Houston, TX, United States:NACE International,1994
[3] Milad M,Zreiba N,Elhalouani F,et al.The effect of cold work on structure and properties of AISI 304 stainless steel[J]. J Mater. Process. Technol.,2008,203(1-3):80
[4] Berge P,Donati J R,Prieux B,et al.Caustic stress corrosion of Fe-Cr-Ni austenitic alloys[J].Corrosion,1977,33:425
[5] Korostelev A B,Abramov V Y,Belous V N.Evaluation of stainless steels for their resistance to intergranular corrosion[J]. J. Nucl. Mater.,1996,233-237:1361
[6] Lisowyj B.Evaluation of cracking in type 348 stainless steel control element drive mechanism housings[A].Proceedings of the 6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C].San Diego, California,1993:343
[7] Peng Q J,Hou J,Yonezawa T,et al.Environmentally assisted crack growth in one-dimensionally cold worked Alloy 690TT in primary water[J].Corros. Sci.,2012,57:81
[8] Kuniya J,Masaoka I,Sasaki R.Effect of cold work on the stress corrosion cracking of nonsensitized AISI 304 stainless steel in high-temperature oxygenated water[J].Corrosion,1988,44:21
[9] Wang S,Takeda Y,Sakaguchi K,et al.Cracking paths during initiation of environmentally assisted cracking in high temperature water[J]. J Nucl. Sci. Technol.,2005,42(7):670
[10] Yaguchi S,Yonezawa T.Intergranular Stress Corrosion Cracking growth perpendicular to fatigue pre-cracks in T-L oriented compact tension specimens in simulated Pressurized Water Reactor primary water[J].Corros. Sci.,2014,86:326
[11] Meng F J,Lu Z P,Shoji T,et al.Stress corrosion cracking of uni-directionally cold worked 316NG stainless steel in simulated PWR primary water with various dissolved hydrogen concentrations[J].Corros. Sci.,2011,53:2558
[12] Barton G B.Influence of container material on character of corrosion products produced on austenitic stainless steels by hot concentrated sodium hydroxide[J].Scr. Metall.,1977,11:391
[13] Agrawal A K,Sheth K G,Poteet K,et al.The polarization behavior of Fe-Ni-Cr alloys in concentrated sodium hydroxide solutions in the temperature range 25 ℃ to 150 ℃[J]. J. Electrochem. Soc.,1972,119:1637
[14] Zhang W G,Gao F Q,Zhou H Y.Stress corrosion cracking of steam generator tube and primary pipe in PWR type nuclear power plants[J].Atom. Energy Sci. Technol.,1993,27:367
[14] 张伟国,高凤琴,周洪毅.PWR核电站蒸汽发生器传热管和主管道的应力腐蚀破裂研究[J].原子能科学技术,1993,27:367
[15] Xie X F,Ning D,Chen B,et al.Stress corrosion cracking behavior of cold-drawn 316 austenitic stainless steels in simulated PWR environment[J].Corros. Sci.,2016,112:576
[16] Lozano-Perez S,Yamada T,Terachi T,et al.Multi-scale characterization of stress corrosion cracking of cold-worked stainless steels and the influence of Cr content[J].Acta Mater.,2009,57:5361
[17] Staehle R W,Royuela J J,Raredon T L,et al.Effect of alloy composition on stress corrosion cracking of Fe-Cr-Ni base alloys[J].Corrosion,1970,26:451
[18] Arioka K,Miyamoto T,Yamada T,et al.Formation of cavities prior to crack initiation and growth on cold-worked carbon steel in high-temperature water[J].Corrosion,2010,66:015008
[19] Arioka K,Miyamoto T,Yamada T,et al.Formation of cavities prior to crack initiation and growth on cold-worked carbon steel in high-temperature water[J].Corrosion,2010,66(1):015008
[20] Arioka K,Yamada T,Terachi T,et al.Dependence of stress corrosion cracking for cold-worked stainless steel on temperature and potential, and role of diffusion of vacancies at crack tips[J].Corrosion,2008,64:691
[21] Arioka K,Miyamoto T,Yamada T,et al.Role of cavity formation on crack growth of cold-worked carbon steel, TT 690 and MA 600 in high temperature water[A].Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C].Cham,2011:55
[22] Arioka K,Yamada T,Miyamoto T,et al.Dependence of stress corrosion cracking of alloy 690 on temperature, cold work, and carbide precipitation—role of diffusion of vacancies at crack tips[J].Corrosion,2011,67:035006
[23] Arioka K,Miyamoto T,Yamada T,et al.Role of cavity formation in crack initiation of cold-worked carbon steel in high-temperature water[J].Corrosion,2013,69:487
[24] Wang S,Shoji T,Kawaguchi N.Initiation of environmentally assisted cracking in high-temperature water[J].Corrosion,2005,61:137
[25] Arioka K,Iijima Y,Miyamoto T.Rapid nickel diffusion in cold-worked carbon steel at 320-450 ℃[J].Philos. Mag.,2015,95:3577
[26] Terachi T,Yamada T,Miyamoto T,et al.SCC growth behaviors of austenitic stainless steels in simulated PWR primary water[J]. J. Nucl. Mater.,2012,426:59
[27] Andresen P L,Emigh P W,Young L M,et al.Stress corrosion crack growth rate behavior of Ni alloys 182 and 600 in high temperature water[A].Corrosion 2002[C].Denver,2002
[28] Shoji T,Li G,Kwon J,et al.Quantification of yield strength effects on IGSCC of austenitic stainless steels in high temperature water[A].Proceedings of the 11th Conference of Environmental Degradation of Materials in Materials in Nuclear Systems[C].Warrendale, PA,2003:834
[29] Arioka K,Yamada T,Terachi T,et al.Influence of carbide precipitation and rolling direction on intergranular stress corrosion cracking of austenitic stainless steels in hydrogenated high-temperature water[J].Corrosion,2006,62:568
[30] Moshier W C,Brown C M.Effect of cold work and processing orientation on stress corrosion cracking behavior of Alloy 600[J].Corrosion,2000,56:307
[31] Gooch D J.The effect of anisotropy on creep and creep crack growth in cold-worked C-Mn steel at 360 ℃[J].Mater. Sci. Eng.,1987,91:45
[32] Chen J J,Lu Z P,Xiao Q,et al.The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments[J]. J. Nucl. Mater.,2016,472:1
[33] Hou J,Peng Q J,Shoji T,et al.Effects of cold working path on strain concentration, grain boundary microstructure and stress corrosion cracking in Alloy 600[J].Corros. Sci.,2011,53:2956
[34] Garc??a C,Mart??n F,De Tiedra P,et al.Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels[J].Corros. Sci.,2001,43:1519
[35] Lu W F,Lai C L,Huang J Y.Effects of hydrogen water chemistry on stress corrosion cracking behavior of cold-worked 304L stainless steel in high-temperature water environments[J].Mater. Trans.,2014,55:506
[36] Meisnar M,Vilalta-Clemente A,Moody M,et al.A mechanistic study of the temperature dependence of the stress corrosion crack growth rate in SUS316 stainless steels exposed to PWR primary water[J].Acta Mater.,2016,114:15
[37] Arioka K,Yamada T,Miyamoto T,et al.Intergranular stress corrosion cracking growth behavior of Ni-Cr-Fe alloys in pressurized water reactor primary water[J].Corrosion,2014,70:695
[38] Shoji T.Progress in the mechanistic understanding of BWR SCC and its implication to the prediction of SCC growth behavior in plants[A].Proceedings of the 11th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C].Stevenson,2003:588
[39] Fukai Y,ōkuma N.Evidence of copious vacancy formation in Ni and Pd under a high hydrogen pressure[J].Jpn. J. Appl. Phys.,1993,32:L1256
[40] Fukai Y,ōkuma N.Formation of superabundant vacancies in Pd hydride under high hydrogen pressures[J].Phys. Rev. Lett.,1994,73:1640
[41] Yamazaki Y,Iijima Y,Okada M.Enhanced diffusion of Au inγ-Fe by vacancies induced under elevated hydrogen pressure[J].Acta Mater.,2004,52:1247
[42] Ford F P,Taylor D F,Andresen P L,et al.Environmentally-controlled cracking of stainless and low-alloy steels in lightwater reactor environments[R].NP-5064M, Final Report, EPRI,1987
[43] Andresen P L,Ford F P.Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel alloys in aqueous systems[J].Mater. Sci. Eng.,1988,A103:167
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[4] 李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[5] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[6] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[8] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[10] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[11] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[12] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[13] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[14] 邓平,孙晨,彭群家,韩恩厚,柯伟. 堆芯结构材料辐照促进应力腐蚀开裂研究现状[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.
[15] 郭跃岭,韩恩厚,王俭秋. 锻后热处理对核级316LN不锈钢在沸腾MgCl2溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.