Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (4): 321-327    DOI: 10.11902/1005.4537.2015.177
  研究报告 本期目录 | 过刊浏览 |
SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为
罗金恒1(),胥聪敏2,杨东平2
1. 中国石油集团石油管工程技术研究院 石油管材及装备材料服役行为与结构安全国家重点实验室 西安 710077
2. 西安石油大学材料科学与工程学院 西安 710065
Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB
Jinheng LUO1(),Congmin XU2,Dongping YANG2
1. State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi'an 710077, China
2. School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
全文: PDF(8298 KB)   HTML
摘要: 

采用慢应变速率拉神 (SSRT) 实验和SEM研究了SRB对X100管线钢在典型的酸性土壤 (鹰潭土壤模拟溶液) 中应力腐蚀开裂行为的影响。结果表明,X100钢母材和焊缝在无菌的鹰潭土壤模拟溶液中的SCC敏感性高于有菌时的,X100钢母材和焊缝在无菌和有菌酸性土壤中的断裂模式均为穿晶SCC断裂,说明SRB的存在抑制了X100钢的脆变,导致X100钢的SCC敏感性降低,这可能是由于SRB能在X100钢表面快速生长繁殖并形成生物膜,该生物膜随时间的增加会不断的堆积并变得致密,一定程度上阻隔了腐蚀性Cl-进入钢基体表面,致使X100钢的SCC敏感性减小。

关键词 X100管线钢应力腐蚀开裂硫酸盐还原菌酸性土壤    
Abstract

The effect of sulfate reducing bacteria (SRB) on stress corrosion cracking (SCC) behavior of X100 pipeline steel was investigated in artificial solution, which simulated the acid soil medium in the area of Yingtan at the Southeast China by means of slow strain rate test (SSRT) and scanning electron microscope (SEM). The results show that X100 pipeline steel has higher SCC susceptibility in the sterile artificial solution than that with SRB. The failure mode is transgranular cracking in both the two solutions. These results suggest that SRB inhibits the brittleness and reduces the SCC susceptibility of X100 pipeline steel, which may be ascribed to that SRB can breed rapidly and form a compact biofilm on X100 pipeline steel surface, then partly block the migration of corrosive Cl- onto the X100 steel surface.

Key wordsX100 pipeline steel    stress corrosion cracking (SCC)    sulfate reducing bacteria (SRB)    acid soil
收稿日期: 2015-11-15     
基金资助:国家自然科学基金项目 (51271146),陕西省自然科学基金项目 (2016JQ5068),陕西省重点学科专项资金项目(YS37020203)和陕西省能源化工过程强化重点实验室项目 (SXECPI201503) 资助

引用本文:

罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
Jinheng LUO, Congmin XU, Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB. Journal of Chinese Society for Corrosion and protection, 2016, 36(4): 321-327.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.177      或      https://www.jcscp.org/CN/Y2016/V36/I4/321

图1  X100管线钢母材和焊缝试样在空气和鹰潭土壤模拟溶液中的应力-应变曲线
Sample number Fracutre life
TF / h
Fracute strength
σb / MPa
Strain
ε / %
Percent elongation
δ / %
Percent reduction in area ψ / % Strength loss coefficient Iσ / % Percent elongation loss coefficient
Iδ / %
Percent reduction loss coefficient Iψ / %
K-M 85.64 874 29.64 19.00 74.96 --- --- ---
K-W 71.51 830 25.63 15.58 62.04 --- --- ---
YT-M 63.00 838 22.56 17.92 54.74 4.12 5.70 26.97
YT-W 44.5 852 18.41 15.33 44.83 -2.65 1.60 28.89
YT-M-SRB 56.52 861 20.30 17.58 68.17 1.49 7.46 9.05
YT-W-SRB 44.00 849 18.62 20.83 62.50 1.33 -33.69 0.86
表1  X100管线钢在不同介质中的应力腐蚀参数和结果
图2  X100管线钢母材和焊缝在空气中的断口形貌
图3  X100管线钢母材在鹰潭无菌与有菌溶液中的断口形貌
图4  X100管线钢焊缝在鹰潭无菌与有菌溶液中的断口形貌
图5  X100管线钢母材与焊缝在空气中SSRT试样断口侧面形貌
图6  X100管线钢母材和焊缝在鹰潭土壤模拟溶液中无菌与含菌条件下SSRT试样断口侧面形貌
[1] Zhang C, Cheng Y F.Synergistic effects of hydrogen and stress on corrosion of X100 pipeline steel in a near-neutral pH solution[J]. Mater. Eng. Perform., 2010, 19: 1284
[2] Zhang B, Qian C W, Wang Y M.Development and application of high-grade pipeline steel at home and abroad[J]. Pet. Eng. Constr., 2012, 38(1): 1
[2] (张斌, 钱成文, 王玉梅. 国内外高钢级管线钢的发展及应用 [J]. 石油工程建设, 2012, 38(1): 1
[3] Argonne National Laboratory.Environmentally acceptable methods control pipeline corrosion at lower cost[J]. Mater. Perform., 1997, 36(2): 71
[4] Peabody A W.Pipeline Corrosion Control [M]. 2nd Ed. Beijing: Chemical Industry Press, 2004
[4] (皮博迪A W. 管线腐蚀控制 [M]. 第2版. 北京: 化学工业出版社, 2004)
[5] Wu T Q, Xu J, Sun C.Microbiological corrosion of pipeline steel under yield stress in soil environment[J]. Corros. Sci., 2014, 88: 291
[6] Cote C, Rosas O, Sztyler M.Corrosion of low carbon steel by microorganisms from the 'pigging' operation debris in water injection pipelines[J]. Bioelectrochemistry, 2014, 97: 97
[7] Chen X, Wang G F, Gao F J.Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings[J]. Corros. Sci., 2015, 101: 1
[8] Fang B Y, Atrens A, Wang J Q.Review of stress corrosion cracking of pipeline steels in "low" and "high" pH solutions[J]. J. Mater. Sci., 2003, 38: 127
[9] Marchal R, Chaussepied B, Warzywoda M.Effect of ferrous ion availability on growth of a corroding SRB[J]. Int. Biodeterior. Biodegrad., 2001, 47: 125
[10] Bouaeshi W, Ironside S, Eadie R.Research and cracking implications from an assessment of two variants of near-neutral pH crack colonies in liquid pipelines[J]. Corrosion, 2007, 63: 648
[11] Park J J, Pyun S I, Kho K H Na. Effect of passivity of the oxide film on low-pH stress corrosion cracking of API 5L X-65 pipeline steel in bicarbonate solution[J]. Corrosion, 2002, 58: 329
[12] Javaherdashtia R, Raman R K S, Panter C, et al. Microbiologically assisted stress corrosion cracking of carbon steel in mixed and pure cultures of sulfate reducing bacteria[J]. Int. Biodeterior. Biodegrad., 2006, 58: 27
[13] Eslami A, Fang B, Kania R.Stress corrosion cracking initiation under the disbonded coating of pipeline steel in near-neutral pH environment[J]. Corros. Sci., 2010, 52: 3750
[14] Abedi S Sh, Abdolmaleki A, Adibi N.Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline[J]. Eng. Fail. Anal., 2007, 14: 250
[15] Biezma M V.The role of hydrogen in microbiologically influenced corrosion and stress corrosion cracking[J]. Int. J. Hydrog. Energy, 2001, 26: 515
[16] Wu T Q, Yan M C, Zeng D C.Stress corrosion cracking of X80 steel in the presence of sulfate-reducing bacteria[J]. J. Mater. Sci. Technol., 2015, 31(4): 413
[17] Li X G, Du C W, Dong C F.Corrosion Behavior and Experimental Research of X70 Steel [M]. Beijing: Science Press, 2006
[17] (李晓刚, 杜翠微, 董超芳. X70钢的腐蚀行为与试验研究 [M]. 北京: 科学出版社, 2006)
[18] Shu D L, Feng Y, Chen J B.Engineering Materials Mechanical Performance [M]. Beijing: Machine Industry Press, 2005
[18] (束德林, 凤仪, 陈九磅. 工程材料力学性能 [M]. 北京: 机械工业出版社, 2005)
[19] Hernandez G, Kucern V, Thierry D, et al.Corrosion inhibition of steel by bacteria[J]. Corrosion, 1994, 50(8): 603
[20] Videla H A.Mechanisms of MIC: Yesterday, today and tomorrow[C]. MIC-An International Perspective Symposium, Extrin Corrosion Consultants [A]. Perth, 2007
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[4] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[6] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[7] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[8] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] 袁玮,黄峰,甘丽君,戈方宇,刘静. 显微组织对X100管线钢氢致开裂及氢捕获行为影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[10] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[11] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[12] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[13] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[14] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[15] 于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.