Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 113-119    DOI: 10.11902/1005.4537.2021.014
  研究报告 本期目录 | 过刊浏览 |
医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究
王中琪1,2, 许春香1(), 杨丽景2(), 田林海1, 黄涛1,2, 史义轩2, 杨文甫1
1.太原理工大学材料科学与工程学院 太原 030024
2.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室 宁波 315201
Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy
WANG Zhongqi1,2, XU Chunxiang1(), YANG Lijing2(), TIAN Linhai1, HUANG Tao1,2, SHI Yixuan2, YANG Wenfu1
1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(8729 KB)   HTML
摘要: 

为了提高医用可降解Mg-2Y-1Zn合金耐腐蚀性能,添加了不同含量的Zr (0,0.2%,0.4%和0.6%,质量分数),并通过XRD、OM、SEM、EDS、析氢和电化学实验等方法研究了Zr含量对合金显微组织和腐蚀行为的影响。结果表明:Mg-2Y-1Zn主要由α-Mg与Mg3Y2Zn3相组成,适量Zr (≤0.4%) 的加入没有改变第二相的类型。Zr可以有效细化合金晶粒,优化组织结构,降低腐蚀电流密度,提升合金耐腐蚀性,并使之趋于均匀腐蚀。但当Zr含量达到0.6%时,多余的Zr会析出形成富Zr区,促进电偶腐蚀的发生,使合金耐蚀性有所下降。析氢结果表明,Mg-2Y-1Zn-0.4Zr合金耐腐蚀性最佳。

关键词 Zr晶粒细化金相组织电化学腐蚀镁合金    
Abstract

The effect of Zr addition of 0%, 0.2%, 0.4% and 0.6% (mass fraction) respectively on the microstructure and corrosion behavior in simulated body fluid of Mg-2Y-1Zn alloys is systematically investigated via XRD, OM, SEM and EDS, as well as hydrogen evolution measurement and electrochemical measurement. The results show that Mg-2Y-1Zn is mainly composed of α-Mg and Mg3Y2Zn3 phases, and the addition of Zr (≤0.4%) does not change the type of the second phase, while Zr can effectively refine the grains, optimize the microstructure, slower the corrosion current density, improve the corrosion resistance of the alloy, and make the alloy tend to uniform corrosion. However, when the addition of Zr is 0.6%, the excess Zr will precipitate to form a Zr rich region, which promotes the occurrence of galvanic corrosion and reduces the corrosion resistance of the alloy. The results of hydrogen evolution measurement show that the Mg-2Y-1Zn-0.4Zr alloy has the best corrosion resistance.

Key wordsZr    grain refining    metallographic structure    electrochemistry    corrosion    Mg-alloy
收稿日期: 2021-01-18     
ZTFLH:  TG27  
基金资助:国家自然科学基金(51574175);国家重点研发计划(2019YFE0118600);宁波市2025重大专项(2019B10104);宁波市自然科学基金(2018A610211)
通讯作者: 许春香,杨丽景     E-mail: xuchunxiang2020@126.com;yanglj@nimte.ac.cn
Corresponding author: XU Chunxiang,YANG Lijing     E-mail: xuchunxiang2020@126.com;yanglj@nimte.ac.cn
作者简介: 王中琪,男,1994年生,硕士生

引用本文:

王中琪, 许春香, 杨丽景, 田林海, 黄涛, 史义轩, 杨文甫. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
Zhongqi WANG, Chunxiang XU, Lijing YANG, Linhai TIAN, Tao HUANG, Yixuan SHI, Wenfu YANG. Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 113-119.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.014      或      https://www.jcscp.org/CN/Y2022/V42/I1/113

AlloyYZnZrMg
Mg-2Y-1Zn2.0511.056---Bal.
Mg-2Y-1Zn-0.2Zr2.2891.1030.211Bal.
Mg-2Y-1Zn-0.4Zr2.1651.2410.385Bal.
Mg-2Y-1Zn-0.6Zr2.0430.9860.613Bal.
表1  Mg-2Y-1Zn-xZr合金成分
图1  不同Zr含量的Mg-2Y-1Zn-Zr合金的XRD谱
图2  不同Zr含量的Mg-2Y-1Zn-xZr金相组织
图3  Mg-2Y-1Zn-0.4Zr 和Mg-2Y-1Zn-0.6Zr合金的金相照片及相应的元素面扫描结果
PointMgZnY
A88.706.664.64
B78.4613.188.36
C94.633.162.21
表2  A,B,C三点的EDS分析
图4  H2释放量,析氢速率和pH随浸泡时间的变化
图5  不同成分合金样品浸泡10 d后的XRD衍射图
图6  4种合金去除腐蚀产物膜前后的表面形貌
图7  4种Mg-2Y-1Zn-xZr合金在SBF中的极化曲线
MaterialEcorrV vs SCECorrosion rate mm·a-1IcorrμA·cm-2
Mg-2Y-1Zn-1.760.71815.86
Mg-2Y-1Zn-0.2Zr-1.760.48710.78
Mg-2Y-1Zn-0.4Zr-1.610.0260.567
Mg-2Y-1Zn-0.6Zr-1.660.1102.43
表3  4种Mg-2Y-1Zn-xZr合金在SBF中的极化曲线拟合结果
图8  4种Mg-2Y-1Zn-xZr合金在SBF溶液中的阻抗图谱及拟合电路
MaterialRs / Ω·cm2Q1n1Rct / Ω·cm2Q2n2Rf
Mg-2Y-1Zn37.216.49×10-50.80612.01.31×10-41.00436.5
Mg-2Y-1Zn-0.2Zr39.628.31×10-70.85877.61.63×10-41.00503.7
Mg-2Y-1Zn-0.4Zr42.269.66×10-70.831431.22.31×10-50.75564.8
Mg-2Y-1Zn-0.6Zr40.951.24×10-60.811154.42.76×10-40.75525.0
表4  拟合电路中各个元件的拟合结果
1 Joost W J, Krajewski P E. Towards magnesium alloys for high-volume automotive applications [J]. Scr. Mater., 2017, 128: 107
2 Khalajabadi S Z, Kadir M R A, Izman S, et al. The effect of MgO on the biodegradation, physical properties and biocompatibility of a Mg/HA/MgO nano composite manufactured by powder metallurgy method [J]. J. Alloy. Compd., 2016, 655: 266
3 Zheng L, Wang M T, Yu B Y. Research progress of cold spraying coating technology for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 22
3 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 22
4 Wang Q, Tan L L, Yang K. Cytocompatibility and hemolysis of AZ31B magnesium alloy with Si-containing coating [J]. J. Mater. Sci. Technol., 2015, 31: 845
5 Gao B N, Yu Z W, Han Q, et al. Research and application status quo of calcium phosphate coating surface modified magnesium alloy [J]. Chongqing Med., 2021, 50: 2501
5 高蓓宁, 喻正文, 韩琪等. 磷酸钙涂层表面改性镁合金的研究应用现状 [J]. 重庆医学, 2021, 50: 2501
6 Wu G H, Chen Y S, Ding W J. Current research, application and future prospect of magnesium alloys in aerospace industry [J]. Mann. Spaceflight, 2016, 22(3): 281
6 吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望 [J]. 载人航天, 2016, 22(3): 281
7 Wang Z, Wang X, Tian Y, et al. Degradation and osteogenic induction of a SrHPO4 -coated Mg-Nd-Zn-Zr alloy intramedullary nail in a rat femoral shaft fracture model [J]. Biomaterials, 2020, 247: 1
8 Istrate B, Munteanu C, Lupescu S, et al. Electrochemical analysis and in vitro assay of Mg-0.5Ca-xY biodegradable alloys [J]. Materials, 2020, 13: 3082
9 Jin S, Zhang D, Lu X P, et al. Mechanical properties, biodegradability and cytocompatibility of biodegradable Mg-Zn-Zr-Nd/Y alloys [J]. J. Mater. Sci. Technol., 2020, 47: 190
10 Liu H, Xue F, Bai J, et al. Microstructures and mechanical properties of Mg-2Y-xZn (x=1, 2, 3 at%) alloys [J]. Rare Met. Mater. Eng., 2014, 43: 570
11 Li Z M, Luo A A, Wang Q G, et al. Effects of grain size and heat treatment on the tensile properties of Mg-3Nd-0.2Zn (wt%) magnesium alloys [J]. Mater. Sci. Eng., 2013, 564A: 450
12 Sun Y, Zhang W X, Xu C X, et al. Microstructures and biocorrosion properties of biodegradable Mg-Zn-Y-Ca-xZr alloys [J]. Int. J. Mater. Res., 2018, 109: 621
13 Wang Y F, Zhang Y B, Gao W. Effect of Zr on the microstructures and mechanical properties of as-extruded Mg-2.3Zn-0.18Y-xZr alloys [J]. Int. J. Mod. Phys., 2017, 31B: 16
14 Zhang M M, Zhou G R, Sun H J, et al. Effects of Ti and Zr elements addition on the microstructure and corrosion resistance of Zn-2.5Al-2Mg alloy [J]. Mater. Res. Express., 2020, 7: 026525
15 Wu Z L, Zhang S C, Liu S, et al. Grain refinement mechanism of cast Mg-6Zn-xZr Alloy [J]. Spec. Cast. Nonferr. Alloys, 2018, 38: 89
16 Peng G S, Wang Y, Fan Z Y. Effect of intensive melt shearing and Zr content on grain refinement of Mg-0.5Ca-xZr alloys [J]. Mater. Sci. Forum, 2013, 765: 336
17 Alabbasi A, Liyanaarachchi S, Kannan M B. Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy [J]. Thin Solid Films, 2012, 520: 6841
18 Wang B J, Xu D K, Dong J H, et al. Effect of the crystallographic orientation and twinning on the corrosion resistance of an as-extruded Mg-3Al-1Zn (wt.%) bar [J]. Scr. Mater., 2014, 88: 5
19 Peng D W, Hu M L, Liu H J, et al. Effect of surface pretreatment of 304 stainless steel on properties of deposited CrMoN coating [J]. Mater. Mechan. Eng., 2021, 45(1): 50
19 彭定文, 忽梦磊, 刘豪杰等. 304不锈钢表面预处理对沉积CrMoN涂层性能的影响 [J]. 机械工程材料, 2021, 45(1): 50
[1] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[2] 李鸿瑾, 王歧山, 廖子涵, 孙祥锐, 孙晖, 张新阳, 陈旭. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[3] 王晶, 王斯琰, 张崇, 王文涛, 曹星, 樊宁, 徐宏妍. 氮掺杂对碳纳米颗粒缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[4] 刘术辉, 刘斌, 徐大伟, 刘蔚, 陈凡伟, 刘思琪. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[5] 邓佳丽, 闫茂成, 高博文, 张辉. 高铁动态交流干扰下管道钢的腐蚀行为试验研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[6] 王永祥, 何柏林, 李力. 超声冲击改善P355NL1钢焊接接头腐蚀疲劳性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 120-126.
[7] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[8] 朱海林, 陆小猛, 李晓芬, 王俊霞, 刘建华, 冯丽, 马雪梅, 胡志勇. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[9] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[10] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[11] 阎竹, 张晨阳, 王立新, 袁国, 张元祥, 方烽, 王洋, 康健. 结构稳定性对Zr基非晶合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 79-84.
[12] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[13] 陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
[14] 刘冬, 刘静, 黄峰, 杜丽影, 彭文杰. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型[J]. 中国腐蚀与防护学报, 2022, 42(1): 163-168.
[15] 张兹瑜, 吴欣强, 韩恩厚, 柯伟. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.