|
|
核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展 |
张兹瑜, 吴欣强( ), 韩恩厚, 柯伟 |
中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 辽宁省核电材料安全与评价技术重点实验室 沈阳 110016 |
|
A Review on Corrosion Fatigue Crack Growth Behavior of Structural Materials in Nuclear Power Plants |
ZHANG Ziyu, WU Xinqiang( ), HAN En-Hou, KE Wei |
CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
张兹瑜, 吴欣强, 韩恩厚, 柯伟. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
Ziyu ZHANG,
Xinqiang WU,
En-Hou HAN,
Wei KE.
A Review on Corrosion Fatigue Crack Growth Behavior of Structural Materials in Nuclear Power Plants. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 9-15.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2021.094
或
https://www.jcscp.org/CN/Y2022/V42/I1/9
|
1 |
Tan J B, Wu X Q, Han E-H, et al. Corrosion fatigue behavior of Alloy 690 steam generator tube in borated and lithiated high temperature water [J]. Corros. Sci., 2014, 89: 203
|
2 |
Chopra O, Stevens G L. Effect of LWR coolant environments on the fatigue life of reactor materials [R]. Nureg/CR-6909, (Rev. 1
|
2 |
, 2018
|
3 |
Seifert H P, Ritter S. Corrosion fatigue crack growth behaviour of low-alloy reactor pressure vessel steels under boiling water reactor conditions [J]. Corros. Sci., 2008, 50: 1884
|
4 |
Seifert H P, Ritter S, Leber H J. Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions [J]. Corros. Sci., 2012, 55: 61
|
5 |
ASME Boiler and Pressure Vessel Code Section XI [S]. ASME BPVC.XI, 2015
|
6 |
Shoji T, Takahashi H, Suzuki M, et al. A new parameter for characterizing corrosion fatigue crack growth [J]. J. Eng. Mater. Technol., 1981, 103: 298
|
7 |
Environmental fatigue evaluation method for nuclear power plants [R]. JNES-SS-1005, 2011
|
8 |
Wu X Q, Tan J B, Xu S, et al. Corrosion fatigue mechanism of nuclear-grade low alloy steel in high temperature pressurized water and its environmental fatigue design model [J]. Acta Metall. Sin., 2015, 51: 298
|
8 |
吴欣强, 谭季波, 徐松等. 核级低合金钢高温水腐蚀疲劳机制及环境疲劳设计模型 [J]. 金属学报, 2015, 51: 298
|
9 |
Tan J B, Zhang Z Y, Zheng H, et al. Corrosion fatigue model of austenitic stainless steels used in pressurized water reactor nuclear power plants [J]. J. Nucl. Mater., 2020, 541: 152407
|
10 |
Shark W J, Kassner T F. Review of environmental effects on fatigue crack growth of austenitic stainless steels [R]. Washington, DC: United States Nuclear Regulatory Commision, 1994
|
11 |
Gao J, Tan J B, Wu X Q, et al. Effect of grain boundary engineering on corrosion fatigue behavior of 316LN stainless steel in borated and lithiated high-temperature water [J]. Corros. Sci., 2019, 152: 190
|
12 |
Choi H S, Kim J H, Kim S H, et al. Fatigue crack growth characteristics of austenitic stainless steel for cold-stretched pressure vessels at cryogenic temperatures [J]. Mater. Sci. Eng. Technol., 2016, 47: 444
|
13 |
Young M C, Huang J Y, Kuo R C. Corrosion fatigue behavior of cold-worked 304l stainless steel in a simulated bwr coolant environment [J]. Mater. Trans., 2009, 50: 657
|
14 |
Wu X Q, Katada Y. Strain-rate dependence of low cycle fatigue behavior in a simulated BWR environment [J]. Corros. Sci., 2005, 47: 1415
|
15 |
Terachi T, Yamada T, Miyamoto T, et al. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water [J]. J. Nucl. Mater., 2012, 426: 59
|
16 |
Was G S, Sung J K, Angeliu T M. Effects of grain boundary chemistry on the intergranular cracking behavior of Ni-16Cr-9Fe in high-temperature water [J]. Metall. Trans., 1992, 23A: 3343
|
17 |
Lehockey E M, Brennenstuhl A M, Thompson I. On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking [J]. Corros. Sci., 2004, 46: 2383
|
18 |
Peng Q J, Yamauchi H, Shoji T. Investigation of dendrite-boundary microchemistry in alloy 182 using auger electron spectroscopy analysis [J]. Metall. Mater. Trans., 2003, 34A: 1891
|
19 |
Shen Z, Liu J L, Arioka K, et al. On the role of intergranular carbides on improving the stress corrosion cracking resistance in a cold-worked alloy 600 [J]. J. Nucl. Mater., 2019, 514: 50
|
20 |
Zhang Z Y, Tan J B, Wu X Q, et al. Synergistic effect of mechanical and environmental damages of 316LN stainless steel under different fatigue strain amplitudes in high-temperature pressurized water [J]. Mater. Sci. Eng., 2019, 743A: 243
|
21 |
Chen J J, Lu Z P, Xiao Q, et al. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments [J]. J. Nucl. Mater., 2016, 472: 1
|
22 |
Matsuo T, Sano K, Sakakibara Y, et al. Estimation of stress corrosion cracking initiation and propagation in high-pressure, high-temperature water environment utilizing acoustic emission [J]. Mater. Trans., 2015, 56: 327
|
23 |
Zhu R L, Wang J Q, Zhang L T, et al. Stress corrosion cracking of 316L HAZ for 316L stainless steel/Inconel 52M dissimilar metal weld joint in simulated primary water [J]. Corros. Sci., 2016, 112: 373
|
24 |
Peng Q J, Hou J, Takeda Y, et al. Effect of chemical composition on grain boundary microchemistry and stress corrosion cracking in Alloy 182 [J]. Corros. Sci., 2013, 67: 91
|
25 |
Zhu R L, Wang J Q, Zhang Z M, et al. Stress corrosion cracking of fusion boundary for 316L/52M dissimilar metal weld joints in borated and lithiated high temperature water [J]. Corros. Sci., 2017, 120: 219
|
26 |
Dong L J, Peng Q J, Han E-H, et al. Microstructure and intergranular stress corrosion cracking susceptibility of a SA508-52M-316L dissimilar metal weld joint in primary water [J]. J. Mater. Sci. Technol., 2018, 34: 1282
|
27 |
Hänninen H, Seifert H P, Yagodzinskyy Y, et al. Effects of dynamic strain aging on environment-assisted cracking of low alloy pressure vessel and piping steels [A]. 10th International Conference on Environmental Degradation of Materials in Nuclear Power Systerms-Water Reacters [C]. South Lake, Tahoe, Nevada, 2001: 199
|
28 |
Ritter S, Seifert H P. Characterisation of the lower shell and weld material of the Biblis C reactor pressure vessel [R]. Switzerland: Paul Scherrer Institut, 2002
|
29 |
Lu Z P, Shoji T, Takeda Y. Effects of water chemistry on stress corrosion cracking of 316NG weld metals in high temperature water [J]. Corros. Eng. Sci. Technol., 2015, 50: 41
|
30 |
Chen T C, Chang H H, Huang J Y, et al. Stress corrosion cracking of simulated heat-affected zone in a CF8A weld in high temperature water [J]. J. Nucl. Mater., 2019, 527: 151810
|
31 |
Tan J B, Wang X, Wu X Q, et al. Corrosion fatigue behavior of 316ln stainless steel hollow specimen in high-temperature pressurized water [J]. Acta Metall. Sin., 2021, 51: 309
|
31 |
谭季波, 王翔, 吴欣强等. 316LN不锈钢管状试样高温高压水的腐蚀疲劳行为 [J]. 金属学报, 2021, 51: 309
|
32 |
Huang J Y, Liu R F, Chiang M F, et al. Corrosion fatigue behavior of dissimilar metal weldments under nominal constant ΔK loading mode in a simulated BWR coolant environment [J]. Corros. Sci., 2011, 53: 2289
|
33 |
Lou X Y, Othon M A, Rebak R B. Corrosion fatigue crack growth of laser additively-manufactured 316L stainless steel in high temperature water [J]. Corros. Sci., 2017, 127: 120
|
34 |
Gao J, Tan J B, Jiao M, et al. Role of welding residual strain and ductility dip cracking on corrosion fatigue behavior of Alloy 52/52M dissimilar metal weld in borated and lithiated high-temperature water [J]. J. Mater. Sci. Technol., 2020, 42: 163
|
35 |
Cicero S, Setién J, Gorrochategui I. Assessment of thermal aging embrittlement in a cast stainless steel valve and its effect on the structural integrity [J]. Nucl. Eng. Des., 2009, 239: 16
|
36 |
Yi Y S, Shoji T. Detection and evaluation of material degradation of thermally aged duplex stainless steels: Electrochemical polarization test and AFM surface analysis [J]. J. Nucl. Mater., 1996, 231: 20
|
37 |
Mathew M D, Lietzan L M, Murty K L, et al. Low temperature aging embrittlement of CF-8 stainless steel [J]. Mater. Sci. Eng., 1999, 269A: 186
|
38 |
Chung H M, Chopra O K. Microstructures of cast-duplex stainless steel after long-term aging [A]. Proceedings of the 2nd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Monterey, 1986
|
39 |
Ming H L, Zhang Z M, Wang J Q, et al. Microstructural characterization of an SA508-309L/308L-316L domestic dissimilar metal welded safe-end joint [J]. Mater. Charact., 2014, 97: 101
|
40 |
Hale G E, Garwood S J. Effect of aging on fracture behaviour of cast stainless steel and weldments [J]. Mater. Sci. Technol., 1990, 6: 230
|
41 |
Li S L, Wang Y L, Li S X, et al. Microstructures and mechanical properties of cast austenite stainless steels after long-term thermal aging at low temperature [J]. Mater. Des., 2013, 50: 886
|
42 |
Dong L J, Han E-H, Peng Q J, et al. Environmentally assisted crack growth in 308L stainless steel weld metal in simulated primary water [J]. Corros. Sci., 2017, 117: 1
|
43 |
Brooks J A, Thompson A W. Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds [J]. Int. Mater. Rev., 1991, 36: 16
|
44 |
Brooks J A, West A J, Thompson A W. Effect of weld composition and microstructure on hydrogen assisted fracture of austenitic stainless steels [J]. Metall. Trans., 1983, 14A: 75
|
45 |
Brooks J A, West A J. Hydrogen induced ductility losses in austenitic stainless steel welds [J]. Metall. Trans., 1981, 12A: 213
|
46 |
Luppo M I, Hazarabedian A, Ovejero-García J. Effects of delta ferrite on hydrogen embrittlement of austenitic stainless steel welds [J]. Corros. Sci., 1999, 41: 87
|
47 |
Jackson H F, San Marchi C, Balch D K, et al. Effect of low temperature on hydrogen-assisted crack propagation in 304L/308L austenitic stainless steel fusion welds [J]. Corros. Sci., 2013, 77: 210
|
48 |
Somerday B P, Dadfarnia M, Balch D K, et al. Hydrogen-assisted crack propagation in austenitic stainless steel fusion welds [J]. Metall. Mater. Trans., 2009, 40A: 2350
|
49 |
Jackson H F, Nibur K A, San Marchi C, et al. Hydrogen-assisted crack propagation in 304L/308L and 21Cr-6Ni-9Mn/308L austenitic stainless steel fusion welds [J]. Corros. Sci. 2012, 60: 136
|
50 |
Danoix F, Auger P. Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: A review [J]. Mater. Charact., 2000, 44: 177
|
51 |
Trautwein A, Gysel W. Influence of long-time aging of CF8 and CF8M cast steel at temperatures between 300 and 500C on impact toughness and structural properties [J]. Int. Cast Met. J., 1981, 6: 43
|
52 |
Tan J B, Wu X Q, Han E H, et al. The effect of dissolved oxygen on fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water [J]. Corros. Sci., 2016, 102: 394
|
53 |
Atkinson J D, Yu J, Chen Z Y, et al. Modelling of corrosion fatigue crack growth plateaux for RPV steels in high temperature water [J]. Nucl. Eng. Des., 1998, 184: 13
|
54 |
Liu X, Wang H, Zhu Z L, et al. Oxidation characteristics of austenitic heat-resistant steel HR3C and Sanicro25 in supercritical water for power station [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 529
|
54 |
刘晓, 王海, 朱忠亮等. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 529
|
55 |
Tan J B, Wu X Q, Han E H, et al. Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water [J]. J. Nucl. Mater., 2017, 489: 33
|
56 |
Tan J B. Corrosion fatigue behavior of a domestic nuclear-grade 316L stainless steel in high temperature high pressure water environment [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2013
|
56 |
谭季波. 国产核级316L不锈钢高温高压水腐蚀疲劳行为研究 [D]. 沈阳: 中国科学院金属研究所, 2013
|
57 |
Min K D, Lee B S, Kim S J. Effects of oxide on fatigue crack growth behaviour of type 347 stainless steel in PWR water conditions [J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38: 960
|
58 |
Hong S, Min K D, Jeon S H, et al. Environmental fatigue crack growth rate of Type 347 austenitic stainless steel in simulated PWR water conditions [J]. Int. J. Pres. Vess. Pip., 2018, 167: 11
|
59 |
Ritter S, Seifert H P. Effect of corrosion potential on the corrosion fatigue crack growth behaviour of low-alloy steels in high-temperature water [J]. J. Nucl. Mater., 2008, 375: 72
|
60 |
Zhang Z, Wu X Q, Tan J B. Review of electrochemical noise technique for in situ monitoring of stress corrosion cracking [J]. J. Chin. Corros. Prot., 2020, 40: 223
|
60 |
张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展 [J]. 中国腐蚀与防护学报, 2020, 40: 223
|
61 |
Cang Y, Huang Y H, Weng S, et al. Effect of environmental variables on galvanic corrosion performance of welded joint of nuclear steam turbine rotor [J]. J. Chin. Corros. Prot., 2021, 41: 318
|
61 |
苍雨, 黄毓晖, 翁硕等. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 318
|
62 |
Ran D, Meng H M, Li Q D, et al. Effect of temperature on corrosion behavior of 14Cr12Ni3WMoV stainless steel in 0.02 mol/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 362
|
62 |
冉斗, 孟惠民, 李全德等. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 362
|
63 |
ASME Boiler and Pressure Vessel Code [R]. New York, 2015 Code Case N809
|
64 |
Itatani M, Asano M, Kikuchi M, et al. Fatigue crack growth curve for austenitic stainless steels in BWR environment [J]. J. Press. Vess. Technol., 2001, 123: 166
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|