Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 9-15    DOI: 10.11902/1005.4537.2021.094
  综合评述 本期目录 | 过刊浏览 |
核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展
张兹瑜, 吴欣强(), 韩恩厚, 柯伟
中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 辽宁省核电材料安全与评价技术重点实验室 沈阳 110016
A Review on Corrosion Fatigue Crack Growth Behavior of Structural Materials in Nuclear Power Plants
ZHANG Ziyu, WU Xinqiang(), HAN En-Hou, KE Wei
CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(591 KB)   HTML
摘要: 

综述了核电结构材料腐蚀疲劳裂纹扩展的研究现状及环境、力学、材料等因素的影响规律,讨论了高温高压水环境中考虑环境效应的疲劳裂纹扩展模型,提出了当前核电结构材料高温高压水腐蚀疲劳裂纹扩展机制及模型研究面临的主要问题及未来可能的研究方向。

关键词 核电结构材料高温高压水腐蚀疲劳裂纹扩展机理裂纹扩展模型    
Abstract

Structural materials in nuclear power plants are subjected to corrosion fatigue (CF) during long-term service in high temperature pressurized water. The mechanism and data base of CF crack growth are essential to the design, operation and life management of nuclear power plants. This paper reviewed the present research status on CF crack growth behavior. The effect of environmental, mechanical and material’s factors were introduced, while the fatigue crack growth model was discussed by taking the environment effect in high temperature pressurized water into consideration. Challenges and trends for research of fatigue crack growth mechanism and model for structural materials in nuclear power plants were also briefly addressed.

Key wordsstructural materials in nuclear power plant    high temperature pressurized water    corrosion fatigue    crack growth mechanism    crack growth model
收稿日期: 2021-04-29     
ZTFLH:  TG172  
基金资助:中核集团青年英才项目及国家科技重大专项(2017ZX 06002003-004-002)
通讯作者: 吴欣强     E-mail: xqwu@imr.ac.cn
Corresponding author: WU Xinqiang     E-mail: xqwu@imr.ac.cn
作者简介: 张兹瑜,男,1991年生,博士,助理研究员

引用本文:

张兹瑜, 吴欣强, 韩恩厚, 柯伟. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
Ziyu ZHANG, Xinqiang WU, En-Hou HAN, Wei KE. A Review on Corrosion Fatigue Crack Growth Behavior of Structural Materials in Nuclear Power Plants. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 9-15.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.094      或      https://www.jcscp.org/CN/Y2022/V42/I1/9

1 Tan J B, Wu X Q, Han E-H, et al. Corrosion fatigue behavior of Alloy 690 steam generator tube in borated and lithiated high temperature water [J]. Corros. Sci., 2014, 89: 203
2 Chopra O, Stevens G L. Effect of LWR coolant environments on the fatigue life of reactor materials [R]. Nureg/CR-6909, (Rev. 1
2 , 2018
3 Seifert H P, Ritter S. Corrosion fatigue crack growth behaviour of low-alloy reactor pressure vessel steels under boiling water reactor conditions [J]. Corros. Sci., 2008, 50: 1884
4 Seifert H P, Ritter S, Leber H J. Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions [J]. Corros. Sci., 2012, 55: 61
5 ASME Boiler and Pressure Vessel Code Section XI [S]. ASME BPVC.XI, 2015
6 Shoji T, Takahashi H, Suzuki M, et al. A new parameter for characterizing corrosion fatigue crack growth [J]. J. Eng. Mater. Technol., 1981, 103: 298
7 Environmental fatigue evaluation method for nuclear power plants [R]. JNES-SS-1005, 2011
8 Wu X Q, Tan J B, Xu S, et al. Corrosion fatigue mechanism of nuclear-grade low alloy steel in high temperature pressurized water and its environmental fatigue design model [J]. Acta Metall. Sin., 2015, 51: 298
8 吴欣强, 谭季波, 徐松等. 核级低合金钢高温水腐蚀疲劳机制及环境疲劳设计模型 [J]. 金属学报, 2015, 51: 298
9 Tan J B, Zhang Z Y, Zheng H, et al. Corrosion fatigue model of austenitic stainless steels used in pressurized water reactor nuclear power plants [J]. J. Nucl. Mater., 2020, 541: 152407
10 Shark W J, Kassner T F. Review of environmental effects on fatigue crack growth of austenitic stainless steels [R]. Washington, DC: United States Nuclear Regulatory Commision, 1994
11 Gao J, Tan J B, Wu X Q, et al. Effect of grain boundary engineering on corrosion fatigue behavior of 316LN stainless steel in borated and lithiated high-temperature water [J]. Corros. Sci., 2019, 152: 190
12 Choi H S, Kim J H, Kim S H, et al. Fatigue crack growth characteristics of austenitic stainless steel for cold-stretched pressure vessels at cryogenic temperatures [J]. Mater. Sci. Eng. Technol., 2016, 47: 444
13 Young M C, Huang J Y, Kuo R C. Corrosion fatigue behavior of cold-worked 304l stainless steel in a simulated bwr coolant environment [J]. Mater. Trans., 2009, 50: 657
14 Wu X Q, Katada Y. Strain-rate dependence of low cycle fatigue behavior in a simulated BWR environment [J]. Corros. Sci., 2005, 47: 1415
15 Terachi T, Yamada T, Miyamoto T, et al. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water [J]. J. Nucl. Mater., 2012, 426: 59
16 Was G S, Sung J K, Angeliu T M. Effects of grain boundary chemistry on the intergranular cracking behavior of Ni-16Cr-9Fe in high-temperature water [J]. Metall. Trans., 1992, 23A: 3343
17 Lehockey E M, Brennenstuhl A M, Thompson I. On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking [J]. Corros. Sci., 2004, 46: 2383
18 Peng Q J, Yamauchi H, Shoji T. Investigation of dendrite-boundary microchemistry in alloy 182 using auger electron spectroscopy analysis [J]. Metall. Mater. Trans., 2003, 34A: 1891
19 Shen Z, Liu J L, Arioka K, et al. On the role of intergranular carbides on improving the stress corrosion cracking resistance in a cold-worked alloy 600 [J]. J. Nucl. Mater., 2019, 514: 50
20 Zhang Z Y, Tan J B, Wu X Q, et al. Synergistic effect of mechanical and environmental damages of 316LN stainless steel under different fatigue strain amplitudes in high-temperature pressurized water [J]. Mater. Sci. Eng., 2019, 743A: 243
21 Chen J J, Lu Z P, Xiao Q, et al. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments [J]. J. Nucl. Mater., 2016, 472: 1
22 Matsuo T, Sano K, Sakakibara Y, et al. Estimation of stress corrosion cracking initiation and propagation in high-pressure, high-temperature water environment utilizing acoustic emission [J]. Mater. Trans., 2015, 56: 327
23 Zhu R L, Wang J Q, Zhang L T, et al. Stress corrosion cracking of 316L HAZ for 316L stainless steel/Inconel 52M dissimilar metal weld joint in simulated primary water [J]. Corros. Sci., 2016, 112: 373
24 Peng Q J, Hou J, Takeda Y, et al. Effect of chemical composition on grain boundary microchemistry and stress corrosion cracking in Alloy 182 [J]. Corros. Sci., 2013, 67: 91
25 Zhu R L, Wang J Q, Zhang Z M, et al. Stress corrosion cracking of fusion boundary for 316L/52M dissimilar metal weld joints in borated and lithiated high temperature water [J]. Corros. Sci., 2017, 120: 219
26 Dong L J, Peng Q J, Han E-H, et al. Microstructure and intergranular stress corrosion cracking susceptibility of a SA508-52M-316L dissimilar metal weld joint in primary water [J]. J. Mater. Sci. Technol., 2018, 34: 1282
27 Hänninen H, Seifert H P, Yagodzinskyy Y, et al. Effects of dynamic strain aging on environment-assisted cracking of low alloy pressure vessel and piping steels [A]. 10th International Conference on Environmental Degradation of Materials in Nuclear Power Systerms-Water Reacters [C]. South Lake, Tahoe, Nevada, 2001: 199
28 Ritter S, Seifert H P. Characterisation of the lower shell and weld material of the Biblis C reactor pressure vessel [R]. Switzerland: Paul Scherrer Institut, 2002
29 Lu Z P, Shoji T, Takeda Y. Effects of water chemistry on stress corrosion cracking of 316NG weld metals in high temperature water [J]. Corros. Eng. Sci. Technol., 2015, 50: 41
30 Chen T C, Chang H H, Huang J Y, et al. Stress corrosion cracking of simulated heat-affected zone in a CF8A weld in high temperature water [J]. J. Nucl. Mater., 2019, 527: 151810
31 Tan J B, Wang X, Wu X Q, et al. Corrosion fatigue behavior of 316ln stainless steel hollow specimen in high-temperature pressurized water [J]. Acta Metall. Sin., 2021, 51: 309
31 谭季波, 王翔, 吴欣强等. 316LN不锈钢管状试样高温高压水的腐蚀疲劳行为 [J]. 金属学报, 2021, 51: 309
32 Huang J Y, Liu R F, Chiang M F, et al. Corrosion fatigue behavior of dissimilar metal weldments under nominal constant ΔK loading mode in a simulated BWR coolant environment [J]. Corros. Sci., 2011, 53: 2289
33 Lou X Y, Othon M A, Rebak R B. Corrosion fatigue crack growth of laser additively-manufactured 316L stainless steel in high temperature water [J]. Corros. Sci., 2017, 127: 120
34 Gao J, Tan J B, Jiao M, et al. Role of welding residual strain and ductility dip cracking on corrosion fatigue behavior of Alloy 52/52M dissimilar metal weld in borated and lithiated high-temperature water [J]. J. Mater. Sci. Technol., 2020, 42: 163
35 Cicero S, Setién J, Gorrochategui I. Assessment of thermal aging embrittlement in a cast stainless steel valve and its effect on the structural integrity [J]. Nucl. Eng. Des., 2009, 239: 16
36 Yi Y S, Shoji T. Detection and evaluation of material degradation of thermally aged duplex stainless steels: Electrochemical polarization test and AFM surface analysis [J]. J. Nucl. Mater., 1996, 231: 20
37 Mathew M D, Lietzan L M, Murty K L, et al. Low temperature aging embrittlement of CF-8 stainless steel [J]. Mater. Sci. Eng., 1999, 269A: 186
38 Chung H M, Chopra O K. Microstructures of cast-duplex stainless steel after long-term aging [A]. Proceedings of the 2nd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Monterey, 1986
39 Ming H L, Zhang Z M, Wang J Q, et al. Microstructural characterization of an SA508-309L/308L-316L domestic dissimilar metal welded safe-end joint [J]. Mater. Charact., 2014, 97: 101
40 Hale G E, Garwood S J. Effect of aging on fracture behaviour of cast stainless steel and weldments [J]. Mater. Sci. Technol., 1990, 6: 230
41 Li S L, Wang Y L, Li S X, et al. Microstructures and mechanical properties of cast austenite stainless steels after long-term thermal aging at low temperature [J]. Mater. Des., 2013, 50: 886
42 Dong L J, Han E-H, Peng Q J, et al. Environmentally assisted crack growth in 308L stainless steel weld metal in simulated primary water [J]. Corros. Sci., 2017, 117: 1
43 Brooks J A, Thompson A W. Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds [J]. Int. Mater. Rev., 1991, 36: 16
44 Brooks J A, West A J, Thompson A W. Effect of weld composition and microstructure on hydrogen assisted fracture of austenitic stainless steels [J]. Metall. Trans., 1983, 14A: 75
45 Brooks J A, West A J. Hydrogen induced ductility losses in austenitic stainless steel welds [J]. Metall. Trans., 1981, 12A: 213
46 Luppo M I, Hazarabedian A, Ovejero-García J. Effects of delta ferrite on hydrogen embrittlement of austenitic stainless steel welds [J]. Corros. Sci., 1999, 41: 87
47 Jackson H F, San Marchi C, Balch D K, et al. Effect of low temperature on hydrogen-assisted crack propagation in 304L/308L austenitic stainless steel fusion welds [J]. Corros. Sci., 2013, 77: 210
48 Somerday B P, Dadfarnia M, Balch D K, et al. Hydrogen-assisted crack propagation in austenitic stainless steel fusion welds [J]. Metall. Mater. Trans., 2009, 40A: 2350
49 Jackson H F, Nibur K A, San Marchi C, et al. Hydrogen-assisted crack propagation in 304L/308L and 21Cr-6Ni-9Mn/308L austenitic stainless steel fusion welds [J]. Corros. Sci. 2012, 60: 136
50 Danoix F, Auger P. Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: A review [J]. Mater. Charact., 2000, 44: 177
51 Trautwein A, Gysel W. Influence of long-time aging of CF8 and CF8M cast steel at temperatures between 300 and 500C on impact toughness and structural properties [J]. Int. Cast Met. J., 1981, 6: 43
52 Tan J B, Wu X Q, Han E H, et al. The effect of dissolved oxygen on fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water [J]. Corros. Sci., 2016, 102: 394
53 Atkinson J D, Yu J, Chen Z Y, et al. Modelling of corrosion fatigue crack growth plateaux for RPV steels in high temperature water [J]. Nucl. Eng. Des., 1998, 184: 13
54 Liu X, Wang H, Zhu Z L, et al. Oxidation characteristics of austenitic heat-resistant steel HR3C and Sanicro25 in supercritical water for power station [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 529
54 刘晓, 王海, 朱忠亮等. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 529
55 Tan J B, Wu X Q, Han E H, et al. Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water [J]. J. Nucl. Mater., 2017, 489: 33
56 Tan J B. Corrosion fatigue behavior of a domestic nuclear-grade 316L stainless steel in high temperature high pressure water environment [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2013
56 谭季波. 国产核级316L不锈钢高温高压水腐蚀疲劳行为研究 [D]. 沈阳: 中国科学院金属研究所, 2013
57 Min K D, Lee B S, Kim S J. Effects of oxide on fatigue crack growth behaviour of type 347 stainless steel in PWR water conditions [J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38: 960
58 Hong S, Min K D, Jeon S H, et al. Environmental fatigue crack growth rate of Type 347 austenitic stainless steel in simulated PWR water conditions [J]. Int. J. Pres. Vess. Pip., 2018, 167: 11
59 Ritter S, Seifert H P. Effect of corrosion potential on the corrosion fatigue crack growth behaviour of low-alloy steels in high-temperature water [J]. J. Nucl. Mater., 2008, 375: 72
60 Zhang Z, Wu X Q, Tan J B. Review of electrochemical noise technique for in situ monitoring of stress corrosion cracking [J]. J. Chin. Corros. Prot., 2020, 40: 223
60 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展 [J]. 中国腐蚀与防护学报, 2020, 40: 223
61 Cang Y, Huang Y H, Weng S, et al. Effect of environmental variables on galvanic corrosion performance of welded joint of nuclear steam turbine rotor [J]. J. Chin. Corros. Prot., 2021, 41: 318
61 苍雨, 黄毓晖, 翁硕等. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 318
62 Ran D, Meng H M, Li Q D, et al. Effect of temperature on corrosion behavior of 14Cr12Ni3WMoV stainless steel in 0.02 mol/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 362
62 冉斗, 孟惠民, 李全德等. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 362
63 ASME Boiler and Pressure Vessel Code [R]. New York, 2015 Code Case N809
64 Itatani M, Asano M, Kikuchi M, et al. Fatigue crack growth curve for austenitic stainless steels in BWR environment [J]. J. Press. Vess. Technol., 2001, 123: 166
[1] 孙晓光, 王子晗, 徐学旭, 韩晓辉, 李刚卿, 刘智勇. 工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 501-507.
[2] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[3] 廖家鹏,吴欣强. 核电材料高温高压水缺口疲劳性能研究现状与进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[4] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[5] 向超,王家贞,付华萌,韩恩厚,张海峰,王俭秋,张志明. 几种高熵合金在核电高温高压水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(2): 107-112.
[6] 朱若林,张志明,王俭秋,韩恩厚. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展[J]. 中国腐蚀与防护学报, 2015, 35(3): 189-198.
[7] 刘晓强,徐雪莲,谭季波,王媛,吴欣强,郑宇礼,孟凡江,韩恩厚. 反应堆冷却剂环境对690合金传热管疲劳性能影响研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[8] 陈东旭, 吴欣强, 韩恩厚. 缝隙腐蚀研究进展及核电材料的缝隙腐蚀问题[J]. 中国腐蚀与防护学报, 2014, 34(4): 295-300.
[9] 马成, 彭群家, 韩恩厚, 柯伟. 核电结构材料应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2014, 34(1): 37-45.
[10] 梁瑞, 张新燕, 李淑欣, 姜峰, 陈帅甫. 半椭球蚀坑对圆棒应力集中的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 532-536.
[11] 谭季波,吴欣强,韩恩厚. 动态应变时效对核电材料环境致裂影响的研究现状与进展[J]. 中国腐蚀与防护学报, 2012, 32(6): 437-442.
[12] 彭青姣,张志明,王俭秋,韩恩厚,柯伟. 溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 217-222.
[13] 徐松;吴欣强;韩恩厚;柯伟. 316Ti不锈钢在模拟核电高温高压水中的腐蚀疲劳裂纹断口研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 119-123.
[14] 周华茂 王俭秋 张波 韩恩厚 臧启山. 轧制AZ31B镁合金腐蚀疲劳过程中的声发射信号分析[J]. 中国腐蚀与防护学报, 2009, 29(2): 81-87.
[15] 张强 . 304不锈钢微尺度试样的腐蚀疲劳性能[J]. 中国腐蚀与防护学报, 2008, 28(2): 99-103 .