Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 51-59    DOI: 10.11902/1005.4537.2021.082
  研究报告 本期目录 | 过刊浏览 |
含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究
朱海林(), 陆小猛, 李晓芬, 王俊霞, 刘建华, 冯丽, 马雪梅, 胡志勇
中北大学 化学工程与技术学院 太原 030051
Synthesis, Corrosion Inhibition and Bactericidal Performance of an Ammonium Salt Surfactant Containing Thiadiazole
ZHU Hailin(), LU Xiaomeng, LI Xiaofen, WANG Junxia, LIU Jianhua, FENG Li, MA Xuemei, HU Zhiyong
School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
全文: PDF(4554 KB)   HTML
摘要: 

结合杂环化合物和季铵盐表面活性剂用作缓蚀剂和杀菌剂的结构特点,合成了含噻二唑杂环的季铵盐表面活性剂 (MTOTB),并采用1HNMR、ESI-MS和FT-IR对其结构进行表征。采用表面张力法研究其表面活性,采用电化学测试和表面分析的方法研究其在含硫酸盐还原菌 (SRB) 的模拟海水中对碳钢的缓蚀性能。结果表明,MTOTB在模拟海水中的临界胶束浓度为0.11 mmol/L。MTOTB浓度为0.2 mmol/L时,对在含SRB菌的模拟海水中浸泡21 d的碳钢的缓蚀率可达95.81%。SEM/EDS与XPS结果表明,MTOTB可以有效地吸附在碳钢表面,抑制碳钢的微生物腐蚀。

关键词 季铵盐表面活性剂噻二唑衍生物表面活性分子内协同效应电化学测试硫酸盐还原菌    
Abstract

An ammonium salt surfactant containing thiadiazole (MTOTB) was synthesized as a novel inhibitor, aiming to combine the characteristics in corrosion inhibition and bactericidal property of heterocyclic compound and ammonium salt surfactant. The structure, surface activity and corrosion inhibition performance for carbon steel in simulated seawater with SRB of the prepared product were characterized by means of 1HNMR, ESI-MS, FT-IR, surface tension measurements, electrochemical measurements and SEM-EDS. The results showed that the critical micelle concentration was 0.11 mmol/L for MTOTB in the simulated seawater. The inhibition efficiency could reach 95.81% for carbon steel in the simulated seawater with SRB for 21 d through addition of 0.2 mmol/L MTOTB. The results of SEM-EDS and XPS showed that MTOTB could adsorb on the surface of carbon steel effectively, so that inhibit the microbial corrosion of carbon steel.

Key wordsammonium salt surfactant    thiadiazole derivative    surface activity    intramolecular synergistic effect    electrochemical measurements    sulfate-reducing bacteria
收稿日期: 2021-04-16     
ZTFLH:  TG171  
基金资助:国家自然科学基金(51701188);山西省自然科学基;金(201801D221088)
通讯作者: 朱海林     E-mail: zhuhailin@nuc.edu.cn
Corresponding author: ZHU Hailin     E-mail: zhuhailin@nuc.edu.cn
作者简介: 朱海林,女,1982年生,博士,副教授

引用本文:

朱海林, 陆小猛, 李晓芬, 王俊霞, 刘建华, 冯丽, 马雪梅, 胡志勇. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
Hailin ZHU, Xiaomeng LU, Xiaofen LI, Junxia WANG, Jianhua LIU, Li FENG, Xuemei MA, Zhiyong HU. Synthesis, Corrosion Inhibition and Bactericidal Performance of an Ammonium Salt Surfactant Containing Thiadiazole. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 51-59.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.082      或      https://www.jcscp.org/CN/Y2022/V42/I1/51

图1  含噻二唑季铵盐表面活性剂的合成路线
图2  MTOTB的ESI-MS谱图
图3  MTOTB的1HNMR谱图
图4  MTOTB的FT-IR光谱图
图5  MTOTB在30 ℃模拟海水中的γ-lgc曲线
图6  SRB在模拟海水中的生长曲线
图7  碳钢在添加不同浓度MTOTB的含SRB的30 ℃模拟海水中浸泡21 d后的Nyquist图和Bode图
图8  电化学阻抗谱等效电路图
Inhibitorc / mMRs / Ω·cm2Cf / μF·cm-2n1Rf / Ω·cm2Cdl / μF·cm-2n2Rct / Ω·cm2Rp / Ω·cm2ηeis / %
SRB---5.054605.240.921.108264.370.93242.00242.80---
MTOTB0.014.77746.820.8560.904144.710.881728.001788.9086.43
0.15.2382.650.942.94313.920.793075.003077.9092.11
0.25.32120.801.002.40411.820.845792.005794.4095.81
0.51.39476.090.386.98533.810.864859.004865.9895.01
1.05.2473.120.952.80342.890.793296.003298.8092.64
表1  电化学阻抗谱拟合数据
图9  碳钢试样在浸泡前及在腐蚀介质中浸泡21 d后的表面SEM图,及其相应的EDS成分分析
图10  碳钢试样在不同介质中浸泡21 d的高分辨XPS能谱图
Valence stateMediumBinding energy / eVProposed structureAtomic fraction / %Valence stateMediumBinding energy / eVProposed structureAtomic fraction / %
C 1sSRB284.77C—C30.23Fe 2pSRB710.40FeS13.74
286.21C—C, C=O711.40Fe2O3
288.00C=O712.28FePO4
MTOTB284.80C—C, C—H38.77713.01FeSO4
286.23C—C, C—H, C—N, C=O724.84Fe3O4
288.35C—N, C=OMTOTB710.86Fe9.68
O 1sSRB529.72Fe2O348.01713.62FeOOH
531.11C=O724.72Fe3O4
532.50Organic OS 2pSRB161.20FeS5
MTOTB529.58FeOOH46.25162.02FeS
531.08SO42-, CO32-163.30FeS2
532.95Organic O164.50Org-S
N 1sSRB399.87C=N3.01167.90SO42-
402.00C=NMTOTB163.9C=S1.16
MTOTB398.30C=N4.14168.54SO42-
399.72C-N, C=N, N-H
402.30C=N (thiadiazole ring)
表2  碳钢试样在不同介质中浸泡21 d后的XPS谱图拟合参数
1 Hou B R. The Cost of Corrosion in China [M]. Beijing: Science Press, 2017
1 侯保荣. 中国腐蚀成本 [M]. 北京: 科学出版社, 2017
2 Dong X C, Guan F, Xu L T, et al. Progress on the corrosion mechanism of sulfate-reducing bacteria in marine environment on metal materials [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 1
2 董续成, 管方, 徐利婷等. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 1
3 Lv M Y, Li Z X, Du M, et al. Formation, function and evolution of biofilm in microbiologically influenced corrosion [J]. Surf. Technol., 2019, 48(11): 59
3 吕美英, 李振欣, 杜敏等. 微生物腐蚀中生物膜的生成、作用与演变 [J]. 表面技术, 2019, 48(11): 59
4 Singh A K, Quraishi M A. The effect of some bis-thiadiazole derivatives on the corrosion of mild steel in hydrochloric acid [J]. Corros. Sci., 2010, 52: 1373
5 Qafsaoui W, Et Taouil A, Kendig M W, et al. Corrosion protection of bronze using 2, 5-dimercapto-1, 3, 4-thiadiazole as organic inhibitor: spectroscopic and electrochemical investigations [J]. J. Appl. Electrochem., 2019, 49: 823
6 Yuan H Y, Dong X, Huang Y M, et al. Synthesis and antibiosis activity of some compounds with thiadiazol structure [J]. Chem. Res. Appl., 2019, 31: 1066
6 袁海燕, 董新, 黄燕敏等. 一些噻二唑衍生物的合成及抑菌活性研究 [J]. 化学研究与应用, 2019, 31: 1066
7 Kuperkar K, Modi J, Patel K. Surface-active properties and antimicrobial study of conventional cationic and synthesized symmetrical Gemini surfactants [J]. J. Surfactants Deterg., 2012, 15: 107
8 Zhu H L, Hu Z Y, Ma X M, et al. Synthesis, surface and antimicrobial activities of cationic gemini surfactants with semi-rigid spacers [J]. J. Surfactants Deterg., 2016, 19: 265
9 Zhu Y K, Free M L, Yi G S. The effects of surfactant concentration, adsorption, aggregation, and solution conditions on steel corrosion inhibition and associated modeling in aqueous media [J]. Corros. Sci., 2016, 102: 233
10 Zhao J M, Gu F, Zhao T, et al. Corrosion inhibition performance of imidazoline derivatives with different pedant chains under three flow rates in high-pressure CO2 environment [J]. Res. Chem. Int., 2016, 42: 5753
11 Aiad I A, Hafiz A A, El-Awady M Y, et al. Some imidazoline derivatives as corrosion inhibitors [J]. J. Surfactants Deterg., 2010, 13: 247
12 Okafor P C, Liu C B, Liu X, et al. Inhibition of CO2 corrosion of N80 carbon steel by carboxylic quaternary imidazoline and halide ions additives [J]. J. Appl. Electrochem., 2009, 39: 2535
13 Hu Z Y, Meng Y B, Ma X M, et al. Experimental and theoretical studies of benzothiazole derivatives as corrosion inhibitors for carbon steel in 1 M HCl [J]. Corros. Sci., 2016, 112: 563
14 Zhu H L, Li X F, Lu X M, et al. Intra-/inter-molecular synergistic inhibition effect of sulfonate surfactant and 2-benzothiazolethiol on carbon steel corrosion in 3.5% NaCl solution [J]. Corros. Sci., 2021, 182: 109291
15 Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
16 Huang J Y. Synthesis of dodecane alkyl metronidazole bisquats and its speciality against microbe induced corrosion [D]. Wuhan: Huazhong University of Science and Technology, 2005
16 黄金营. 含咪唑杂环的长链烷基双季铵盐的合成及其特性研究 [D]. 武汉: 华中科技大学, 2005
17 Liu H W, Gu T Y, Zhang G A, et al. Corrosion of X80 pipeline steel under sulfate-reducing bacterium biofilms in simulated CO2-saturated oilfield produced water with carbon source starvation [J]. Corros. Sci., 2018, 136: 47
18 Zhu H L, Hu Z Y, Wang J L, et al. Synthesis of a series of hydroxy-sulfobetaine surfactant and their micelle formation behavior [J]. China Surfactants Deterg. Cosmet., 2012, 42: 405
18 朱海林, 胡志勇, 王建龙等. 系列羟基磺基甜菜碱表面活性剂的合成及胶束化行为研究 [J]. 日用化学工业, 2012, 42: 405
19 European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution [J]. Clin. Microbiol. Infect., 2003, 9: ix
20 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Examination of bacteria and algae in industrial circulating cooling water-Part 5: Examination of sulfate-reducing bacteria-MPN test [S]. Beijing: Standards Press of China, 2010
20 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 工业循环冷却水中菌藻的测定方法 第5部分:硫酸盐还原菌的测定 MPN法 [S]. 北京: 中国标准出版社, 2010
21 Qiang Y J, Li H, Lan X J. Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment [J]. J. Mater. Sci. Technol., 2020, 52: 63
22 Rodríguez-Gómez F J, Valdelamar M P, Vazquez A E, et al. Mycophenolic acid as a corrosion inhibitor of carbon steel in 3%wt.NaCl solution. an experimental and theoretical study [J]. J. Mol. Struct., 2019, 1183: 168
23 Pakiet M, Kowalczyk I, Garcia R L, et al. Gemini surfactant as multifunctional corrosion and biocorrosion inhibitors for mild steel [J]. Bioelectrochemistry, 2019, 128: 252
24 Peng Y, Hughes A E, Deacon G B, et al. A study of rare-earth 3- (4-methylbenzoyl)-propanoate compounds as corrosion inhibitors for AS1020 mild steel in NaCl solutions [J]. Corros. Sci., 2018, 145: 199
25 Liu H W, Xu D K, Yang K, et al. Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria [J]. Corros. Sci., 2018, 132: 46
26 Wang J L, Hou B S, Xiang J, et al. The performance and mechanism of bifunctional biocide sodium pyrithione against sulfate reducing bacteria in X80 carbon steel corrosion [J]. Corros. Sci., 2019, 150: 296
27 Chen J N. The study on microbiologically influenced corrosion behavior and mechanism of Hull structure material 907 steel in seawater [D]. Qingdao: University of Chinese Academy of Science (Institute of Oceanology, Chinese Academy of Sciences), 2019
27 陈菊娜. 船体结构材料907钢在海水中微生物腐蚀行为及机理研究 [D]. 青岛: 中国科学院大学 (中国科学院海洋研究所), 2019
28 Liu H W, Gu T Y, Zhang G A, et al. Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors [J]. Corros. Sci., 2016, 105: 149
[1] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[2] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[3] 王鼎立, 李勇明, 蒋立明, 陈波, 骆昂. 新型表面活性剂作为油气田酸化缓蚀剂的制备及其性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 542-548.
[4] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[5] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[9] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[10] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[11] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[12] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[13] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[14] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[15] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.