Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 163-168    DOI: 10.11902/1005.4537.2021.016
  研究报告 本期目录 | 过刊浏览 |
考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型
刘冬1,2, 刘静1(), 黄峰1, 杜丽影2, 彭文杰2
1.武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081
2.宝钢股份中央研究院武钢有限技术中心 武汉 430080
Corrosion Fatigue Crack Growth Prediction Model Based on Stress Ratio and Threshold for Marine Engineering Steel DH36Z35 in Seawater
LIU Dong1,2, LIU Jing1(), HUANG Feng1, DU Liying2, PENG Wenjie2
1.The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2.R & D Center of Wuhan Iron & Steel Co. Ltd. , Baosteel Central Research Institute, Wuhan 430080, China
全文: PDF(2197 KB)   HTML
摘要: 

采用自行改造的海水腐蚀疲劳试验机,研究了3 Hz频率、不同应力比R (0.1、0.3、0.5) 下,海洋工程用结构钢DH36Z35在空气和人造海水中疲劳裂纹扩展动力学行为。结果表明:相同裂纹尖端应力场强度因子幅值ΔK下,空气和海水环境中都显示疲劳裂纹扩展速率随着应力比R的增加而增加的规律,在近门槛值区间1×10-7 mm/cycle≤da/dN≤1×10-6 mm/cycle该现象尤其明显;在疲劳裂纹扩展速率da/dN>1×10-6 mm/cycle的中速区间,空气中和海水中疲劳裂纹扩展速率出现拐点,高于该拐点海水加速裂纹扩展,低于该拐点海水抑制裂纹扩展,且应力比R越大,拐点对应裂纹扩展速率越高。依据空气和海水中不同应力比和门槛值条件下疲劳裂纹扩展速率实验结果,提出了一种修正的Walker模型,可通过空气中疲劳裂纹扩展速率预测不同应力比下海水环境中疲劳裂纹扩展速率。

关键词 海洋工程用结构钢腐蚀疲劳裂纹扩展速率应力比人造海水    
Abstract

The fatigue crack growth rate of marine engineering structural steel DH36Z35 in air and artificial seawater are comparatively assessed by means of a home-made seawater corrosion fatigue machine by applied stress ratio of 0.1, 0.3 and 0.5 with a frequency of 3 Hz. The results show that the fatigue crack growth rate increases with the increase of stress ratio R under the same ΔK bothin air and artificial seawater, and this phenomenon is especially evident in the near threshold range 1×10-7 mm/cycle≤da/dN≤1×10-6 mm/cycle. When the fatigue crack growth rate (da/dN) is above 1×10-6 mm/cycle, a flection point may emerge on the curve of fatigue crack growth rate measured both in air and seawater. For the case of testing in the seawater, above the flection point the crack growth is accelerated, whereas below which the crack growth is inhibited. The higher the stress ratio is, the higher the fatigue crack rate corresponding to the inflection point is. Based on the difference of test results in air and artificial seawater by different stress ratio and threshold, a modified Walker model for the prediction of corrosion fatigue crack growth rate is established. By the new prediction model, the fatigue crack growth rate by the applied different stress ratio in seawater can be predicted through the fatigue crack growth rate in air.

Key wordsmarine engineering structural steel    corrosion    fatigue crack growth rate    stress ratio    artificial seawater
收稿日期: 2021-01-22     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51871172);中央指导地方科技发展专项(ZYDD2018026)
通讯作者: 刘静     E-mail: liujing@wust.edu.cn
Corresponding author: LIU Jing     E-mail: liujing@wust.edu.cn
作者简介: 刘冬,男,1985年生,博士生,高级工程师

引用本文:

刘冬, 刘静, 黄峰, 杜丽影, 彭文杰. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型[J]. 中国腐蚀与防护学报, 2022, 42(1): 163-168.
Dong LIU, Jing LIU, Feng HUANG, Liying DU, Wenjie PENG. Corrosion Fatigue Crack Growth Prediction Model Based on Stress Ratio and Threshold for Marine Engineering Steel DH36Z35 in Seawater. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 163-168.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.016      或      https://www.jcscp.org/CN/Y2022/V42/I1/163

图1  腐蚀疲劳裂纹扩展速率试样图
图2  空气及海水中不同应力比下疲劳裂纹扩展速率
图3  R=0.1,0.3和0.5时空气和海水中da/dN-ΔK曲线
No.EnvironmentRCmrΔKth
S01Air0.14.313×10-103.7670.9897.49
S02Air0.33.645×10-104.0540.9866.54
S03Air0.54.088×10-93.1280.9934.41
S04Seawater0.14.712×10-103.7330.9729.15
S05Seawater0.32.631×10-104.2480.9537.79
S06Seawater0.51.690×10-104.5380.9616.07
表1  Paris模型拟合曲线方程及门槛值ΔKth
图4  R=0.1,0.3和0.5时空气和海水中da/dN-(ΔK-ΔKth) 曲线
No.EnvironmentRCmr
S01Air0.16.379×10-71.6280.986
S02Air0.34.051×10-71.9950.997
S03Air0.54.195×10-71.5810.996
S04Seawater0.11.480×10-61.4100.975
S05Seawater0.32.576×10-61.4250.993
S06Seawater0.58.343×10-71.6730.992
表2  Trantina-Johnson模型拟合曲线方程
图5  R=0.1,0.3和0.5时海水中da/dN实测值与预测值比较图
1 Liu W, Wang J. Environmental impact of material corrosion research progress in marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 504
1 刘薇, 王佳. 海洋浪溅区环境对材料腐蚀行为影响的研究进展 [J]. 中国腐蚀与防护学报, 2010, 30: 504
2 Li Z Y, Wang G, Luo S W, et al. Early corrosion behavior of EH36 ship plate steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 463
2 李子运, 王贵, 罗思维等. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 463
3 Matlock D K, Edwards G R, Olson D L, et al. Effect of sea water on the fatigue crack propagation characteristics of welds for offshore structures [J]. J. Mater. Eng., 1987, 9: 25
4 Adedipe O, Brennan F, Kolios A. A relative crack opening time correlation for corrosion fatigue crack growth in offshore structures [J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39: 395
5 Li X Y, Fu Y, Xiong J J. Research about corrosion fatigue behavior of 2B25 aluminum alloy [J]. Chin. Meas. Test, 2015, 41(4): 32
5 李新宇, 付裕, 熊峻江. 2B25铝合金材料腐蚀疲劳性能试验研究 [J]. 中国测试, 2015, 41(4): 32
6 Meng X Q, Lin Z Y, Wang F F. Investigation on corrosion fatigue crack growth rate in 7075 aluminum alloy [J]. Mater. Des., 2013, 51: 683
7 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, StandardizationAdministration. Metallic materials-fatigue testing-fatigue crack growth method [S]. Beijing: China Standard Press, 2017
7 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 疲劳试验 疲劳裂纹扩展方法 [S]. 北京: 中国标准出版社, 2017
8 Trantina G G, Johnson C A. Probabilistic defect size analysis using fatigue and cyclic crack growth rate data [A]. Probabilistic Fracture Mechanics and Fatigue Methods: Applications for Structural Design and Maintenance [C]. West Conshohocken, PA, 1983: 67
9 Walker E K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum [A]. Effects of Environment and Complex Load History on Fatigue Life [C]. West Conshohocken, PA, 1970: 1
10 Zhao J P, Zhou C Y, Yu X C, et al. Effect of stress ratio and Loading frequency on crack growth rate of corrosion fatigue [J]. Press. Ves. Technol., 1999, (6): 1
10 赵建平, 周昌玉, 於孝春等. 加载频率f和应力比R对腐蚀疲劳裂纹扩展速率影响的研究 [J]. 压力容器, 1999, (6): 1
11 Forman R G. Study of fatigue crack initiation from flaws using fracture mechanics theory [J]. Eng. Fract. Mech., 1972, 4(2): 333
12 Wang R. A fracture model of corrosion fatigue crack propagation of aluminum alloys based on the material elements fracture ahead of a crack tip [J]. Int. J. Fatigue, 2008, 30: 1376
13 Wang C Q, Xiong J J, Shenoi R A, et al. A modified model to depict corrosion fatigue crack growth behavior for evaluating residual lives of aluminum alloys [J]. Int. J. Fatigue, 2016, 83: 280
14 Wang K Q, Xu R P, Lin J H. Fatigue crack growth probability model based on stress ratio [J]. J. Aerosp. Power, 2009, 24: 2012
14 王坤茜, 徐人平, 林捷晖. 考虑应力比的疲劳裂纹扩展概率模型 [J]. 航空动力学报, 2009, 24: 2012
15 Han E-H, Han Y M, Zheng Y L, et al. Effects of stress ratio and frequency on corrosion fatigue crack [J]. Acta Metall. Sin., 1993, 29: 31
15 韩恩厚, 韩玉梅, 郑宇礼等. 应力比和频率对低合金钢腐蚀疲劳裂纹扩展机理的影响 [J]. 金属学报, 1993, 29: 31
16 Jones B F. The influence of environment and stress ratio on the low frequency fatigue crack growth behaviour of two medium-strength quenched and tempered steels [J]. Int. J. Fatigue, 1984, 6: 75
17 Elbert W. The significance of fatigue crack closure [A]. Damage Tolerance in Aircraft Structures [C]. West Conshohocken, PA, 1971: 230
18 Li S M, Wu L F, Liu J H, et al. Effect of load ratio and corrosion on fatigue behavior of AerMet100 ultrahigh strength steel [J]. J. Aeronaut. Mater., 2014, 34(3): 74
18 李松梅, 吴凌飞, 刘建华等. 应力比和腐蚀环境对超高强度钢AerMet100疲劳裂纹扩展的影响 [J]. 航空材料学报, 2014, 34(3): 74
[1] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[2] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[3] 张兹瑜, 吴欣强, 韩恩厚, 柯伟. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[4] 王中琪, 许春香, 杨丽景, 田林海, 黄涛, 史义轩, 杨文甫. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[5] 刘术辉, 刘斌, 徐大伟, 刘蔚, 陈凡伟, 刘思琪. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[6] 邓佳丽, 闫茂成, 高博文, 张辉. 高铁动态交流干扰下管道钢的腐蚀行为试验研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[7] 王永祥, 何柏林, 李力. 超声冲击改善P355NL1钢焊接接头腐蚀疲劳性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 120-126.
[8] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[9] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[10] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[11] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[12] 郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[13] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[14] 王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[15] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.