Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 79-84    DOI: 10.11902/1005.4537.2020.245
  研究报告 本期目录 | 过刊浏览 |
结构稳定性对Zr基非晶合金电化学腐蚀性能的影响
阎竹, 张晨阳, 王立新, 袁国(), 张元祥, 方烽, 王洋, 康健
东北大学材料科学与工程学院 沈阳 110819
Effect of Structural Stability on Electrochemical Corrosion Properties of Zr-based Amorphous Alloy
YAN Zhu, ZHANG Chenyang, WANG Lixin, YUAN Guo(), ZHANG Yuanxiang, FANG Feng, WANG Yang, KANG Jian
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
全文: PDF(7332 KB)   HTML
摘要: 

使用双辊法制备了高能态、高自由体积含量的Zr55Cu30Al10Ni5非晶合金,研究了结构稳定性对非晶合金在3.5% (质量分数) NaCl溶液中电化学性能的影响。结果表明,退火试样较铸态试样自由体积减小,动电位极化实验中均出现点蚀。在653 K (低于Tg) 真空退火30 min的试样电化学腐蚀后表面点蚀坑尺寸和数量减少。在693和723 K (介于TgTx之间) 退火的试样腐蚀后点蚀坑尺寸变小,数量增加,非晶中形成的纳米晶使点蚀敏感性增加,基体中自由体积减小阻碍点蚀坑进一步传播。研究表明,双辊法制备的高能态的、自由体积含量多的非晶合金铸带易被腐蚀,在结晶温度以下退火,可以减少其自由体积含量,有利于其腐蚀性能的提高。

关键词 Zr基非晶退火结构弛豫纳米晶电化学性能    
Abstract

Zr55Cu30Al10Ni5 amorphous alloy with high energy state and high free volume content was prepared by twin-roll rolling method. Then the effect of structural stability on the electrochemical properties of the prepared amorphous alloy in 3.5% (mass fraction) NaCl solution was studied. The results show that the free volume of the annealed alloy is smaller than that of the as-cast one, while the former one suffered from pitting corrosion during the potentiodynamic polarization test. The size and number of the electrochemical corrosion test induced corrosion pits are reduced on the surface of the alloy annealed in vacuum at 653 K (lower than Tg) for 30 min. The size of corrosion pits become smaller and the number of pits increases for the alloy annealed at 693 and 723 K (between Tg and Tx) respectively. The nano-crystallites formed in the amorphous alloy may increase its pitting sensitivity, the decrease of free volume in the matrix may hinder the further propagation of corrosion pits. This study shows that the amorphous alloy strip with high energy and high free volume content prepared by Twin-roll rolling method is prone to suffer from corrosion, whereas, the annealing below the crystallization temperature can reduce its free volume content and thus improve its corrosion performance.

Key wordsZr-based amorphous    anneal    structural relaxation    nanocrystal    electrochemical property
收稿日期: 2020-11-30     
ZTFLH:  TG174  
基金资助:基本科研业务费重大科技创新项目(N170708019)
通讯作者: 袁国     E-mail: yuanguoral@sina.com
Corresponding author: YUAN Guo     E-mail: yuanguoral@sina.com
作者简介: 阎竹,女,1994年出生,硕士生

引用本文:

阎竹, 张晨阳, 王立新, 袁国, 张元祥, 方烽, 王洋, 康健. 结构稳定性对Zr基非晶合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 79-84.
Zhu YAN, Chenyang ZHANG, Lixin WANG, Guo YUAN, Yuanxiang ZHANG, Feng FANG, Yang WANG, Jian KANG. Effect of Structural Stability on Electrochemical Corrosion Properties of Zr-based Amorphous Alloy. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 79-84.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.245      或      https://www.jcscp.org/CN/Y2022/V42/I1/79

图1  Zr55Cu30Al10Ni5铸态及退火态试样的XRD图谱
图2  Zr55Cu30Al10Ni5铸态及退火态试样的DSC曲线 (升温速率为20 K/min)
图3  Zr55Cu30Al10Ni5铸态及退火态试样在Tg点前的弛豫焓值
图4  Zr55Cu30Al10Ni5铸态及退火态试样在3.5%NaCl溶液中的动电位极化曲线
AlloyEcorr / mVIcorr / A·cm-2Epit / mVEpit-Ecorr / mV
As-cast-353 (±11)7.438×10-7 (±0.36)-143 (±17)210
Annealed / 653 K-332 (±2)5.743×10-7 (±0.21)-157 (±29)175
Annealed / 693 K-301 (±7)2.191×10-7 (±0.17)-212 (±34)89
Annealed / 723 K-287 (±16)9.823×10-8 (±0.42)-253 (±21)34
表1  Zr55Cu30Al10Ni5铸态及退火态非晶合金在3.5%NaCl溶液中极化曲线拟合结果
图5  Zr55Cu30Al10Ni5铸态及退火态非晶合金在3.5%NaCl溶液中的电化学阻抗图谱
图6  Zr55Cu30Al10Ni5非晶合金在3.5%NaCl溶液中的等效电路图
AlloyRs / Ω·cm2Y0 / 10-5-1·cm-2·s-n)nRct / Ω·cm2
As-cast24.27 (±0.48)1.039 (±0.025)0.92385 (±0.0045)1.112 (±0.029) ×105
Annealed / 653 K17.31 (±0.39)0.437 (±0.010)0.91442 (±0.0037)1.930 (±0.043) ×105
Annealed / 693 K26.74 (±0.48)0.587 (±0.011)0.94333 (±0.0034)4.545 (±0.126) ×105
Annealed / 723 K27.07 (±0.47)0.322 (±0.049)0.90861 (±0.0026)8.002 (±0.187) ×105
表2  Zr55Cu30Al10Ni5铸态及退火态非晶合金在3.5%NaCl溶液中EIS拟合结果
图7  Zr55Cu30Al10Ni5铸态及退火态试样经过3.5%NaCl溶液极化后的表面形貌
图8  Zr55Cu30Al10Ni5铸态及退火态试样TEM图
1 Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys [J]. Acta Mater., 2011, 59: 2243
2 Han T K, Kim S J, Yang Y S, et al. Nanocrystallization and high tensile strength of amorphous Zr-Al-Ni-Cu-Ag alloys [J]. Met. Mater. Int., 2001, 7: 91
3 Sun Y T, Wang C, Lv Y M, et al. Recent progress of the glassy materials and physics [J]. Acta Phys. Sin., 2018, 67: 126101
3 孙奕韬, 王超, 吕玉苗等. 非晶材料与物理近期研究进展 [J]. 物理学报, 2018, 67: 126101
4 Kwon O J, Kim Y C, Kim K B, et al. Formation of amorphous phase in the binary Cu-Zr alloy system [J]. Met. Mater. Int., 2006, 12: 207
5 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
6 Schroeder V, Gilbert C J, Ritchie R O. Comparison of the corrosion behavior of a bulk amorphous metal, Zr41.2Ti13.8Cu12.5Ni10Be22.5, with its crystallized form [J]. Scr. Mater., 1998, 38: 1481
7 Yang Z G, Wang T J, Wang G C, et al. Electrochemical property of a bulk Zr-based amorphous alloy [J]. Chin. J. Rare Met., 2004, 28: 25
7 杨志刚, 王铁军, 王高潮等. 大块锆基非晶合金电化学耐腐蚀行为的试验研究 [J]. 稀有金属, 2004, 28: 25
8 Shao G J, Qin X J. Electrochemical corrosion behaviors of ZrTiCuNiBe bulk amorphous alloy [J]. Met. Phys. Examinat. Test., 2002, (1): 34
8 邵光杰, 秦秀娟. ZrTiCuNiBe大块非晶合金腐蚀行为的电化学研究 [J]. 物理测试, 2002, (1): 34
9 Gebert A, Buchholz K, Leonhard A, et al. Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses [J]. Mater. Sci. Eng., 1999, 267A: 294
10 Zander D, Köster U. Corrosion of amorphous and nanocrystalline Zr-based alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 53
11 Scully J R, Gebert A, Payer J H. Corrosion and related mechanical properties of bulk metallic glasses [J]. J. Mater. Res., 2007, 22: 302
12 Mondal K, Murty B S, Chatterjee U K. Electrochemical behavior of multicomponent amorphous and nanocrystalline Zr-based alloys in different environments [J]. Corros. Sci., 2006, 48: 2212
13 Wang C, Zhang Q S, Jiang F, et al. Corrosion behavior of Zr55Al10Cu30Ni5 amorphous alloy in NaOH solution [J]. Rare Met. Mater Eng., 2003, 32: 814
13 王成, 张庆生, 江峰等. Zr55Al10Cu30Ni5非晶合金在NaOH溶液中的腐蚀行为 [J]. 稀有金属材料与工程, 2003, 32: 814
14 Qiu Z W J, Li Z K, Fu H M, et al. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46: 33
15 Tauseef A, Tariq N H, Akhter J I, et al. Corrosion behavior of Zr-Cu-Ni-Al bulk metallic glasses in chloride medium [J]. J. Alloy. Compd., 2010, 489: 596
16 Mudali U K, Baunack S, Eckert J, et al. Pitting corrosion of bulk glass-forming zirconium-based alloys [J]. J. Alloy. Compd., 2004, 377: 290
17 Jayaraj J, Gebert A, Schultz L. Passivation behaviour of structurally relaxed Zr48Cu36Ag8Al8 metallic glass [J]. J. Alloy. Compd., 2009, 479: 257
18 Zhang Z Y, Zhang J K, Wu J W, et al. Effects of annealing temperature on electrochemical properties of Zr56Cu19Ni11Al9Nb5 metallic glass [J]. Spec. Cast. Nonferrous Alloys, 2019, 39: 586
18 张志英, 张继康, 武俊伟等. 退火温度对Zr56Cu19Ni11Al9Nb5非晶合金电化学性能的影响 [J]. 特种铸造及有色合金, 2019, 39: 586
19 Hua N B, Liao Z L, Wang Q T, et al. Effects of crystallization on mechanical behavior and corrosion performance of a ductile Zr68Al8Ni8Cu16 bulk metallic glass [J]. J. Non-Cryst. Solids, 2020, 529: 119782
20 Zhang L, Wu Y, Feng S D, et al. Rejuvenated metallic glass strips produced via twin-roll casting [J]. J. Mater. Sci. Technol., 2020, 38: 73
21 Zhang C Y, Yuan G, Zhang Y X, et al. Zr55Cu30Al10Ni5 amorphous alloy sheets with large plasticity fabricated by twin-roll strip casting [J]. Mater. Sci. Eng., 2020, 794A: 139904
22 Van den Beukel A, Sietsma J. The glass transition as a free volume related kinetic phenomenon [J]. Acta Metall. Mater., 1990, 38: 383
23 Jiang W H, Jiang F, Green B A, et al. Electrochemical corrosion behavior of a Zr-based bulk-metallic glass [J]. Appl. Phys. Lett., 2007, 91: 041904
24 Lu H B, Zhang L C, Gebert A, et al. Pitting corrosion of Cu-Zr metallic glasses in hydrochloric acid solutions [J]. J. Alloy. Compd., 2008, 462: 60
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[3] 陈嘉晨,王忠维,乔利杰,岩雨. 机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[4] 陈浩,陈庆,辛丽,时龙,朱圣龙,王福会. DD98M纳米晶AlSi渗层制备及抗高温腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[5] 张志英, 汤迦南, 余杰, 王旭东, 黄罗超, 邹俊文, 唐浩, 张继康, 陈亚涛, 程东鹏. 铜基非晶合金复合材料在NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[6] 陈瑶,张洪华,杨干兰,向军淮. 热处理对FeAl-Cr3C2复合涂层微观结构的影响[J]. 中国腐蚀与防护学报, 2017, 37(1): 58-62.
[7] 曹彩红 梁成浩 黄乃宝. 镀铌不锈钢双极板的电化学性能[J]. 中国腐蚀与防护学报, 2013, 33(2): 123-128.
[8] 崔玉卉,胡锐,张铁邦,李健,寇宏超,李金山. Fe基非晶/纳米晶涂层的微结构及其在H2O2溶液中的腐蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(4): 317-321.
[9] 杨青松,李纯,王杰,杨仲年,张昭,张鉴清. 阳极电沉积制备CeO2薄膜[J]. 中国腐蚀与防护学报, 2012, 32(1): 34-38.
[10] 李明菲,彭晓,王福会. 新型细晶Ni3Al涂层的高温氧化行为[J]. 中国腐蚀与防护学报, 2011, 31(6): 414-418.
[11] 郭海艳,朱君秋,邵艳群,唐电. 表面活性剂辅助制备钛阳极的电化学性能[J]. 中国腐蚀与防护学报, 2010, 30(6): 449-452.
[12] 沈长斌,杨怀玉,王胜刚,龙康,王福会. 稀硫酸中丙烯基硫脲对纳米工业纯铁腐蚀作用[J]. 中国腐蚀与防护学报, 2010, 30(6): 433-436.
[13] 梁叔全,张勇,官迪凯,谭小平,唐艳,毛志伟. 轧制温度对铝阳极Al-Mg-Sn-Bi-Ga-In组织和性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.
[14] 马力,李威力,曾红杰,闫永贵,侯保荣. 低驱动电位Al-Ga合金牺牲阳极及其活化机制[J]. 中国腐蚀与防护学报, 2010, 30(4): 329-332.
[15] 孟国哲; 李瑛; 王福会 . 纳米Fe-10Cr涂层电化学腐蚀行为影响研究 Ⅱ点蚀性能[J]. 中国腐蚀与防护学报, 2007, 27(1): 43-47 .