Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 135-142    DOI: 10.11902/1005.4537.2020.261
  研究报告 本期目录 | 过刊浏览 |
TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究
刘珺1, 耿永娟1, 李绍纯1(), 徐爱玲2, 侯东帅1, 刘昂1, 郎秀璐2, 陈旭3, 刘国锋1
1.青岛理工大学土木工程学院 青岛 266033
2.青岛理工大学环境与市政工程学院 青岛 266033
3.中建西部建设股份有限公司新疆公司 乌鲁木齐 830000
Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas
LIU Jun1, GENG Yongjuan1, LI Shaochun1(), XU Ailing2, HOU Dongshuai1, LIU Ang1, LANG Xiulu2, CHEN Xu3, LIU Guofeng1
1.School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
2.School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
3.China Construction Western Construction Company Limited Xinjiang Company, Urumqi 830000, China
全文: PDF(10403 KB)   HTML
摘要: 

通过溶胶-凝胶法制备了正硅酸乙酯 (TEOS) 和异丁基三乙氧基硅烷 (IBTS) 复合乳液,并在混凝土表面构建TEOS/IBTS复合涂层,然后放置于海洋潮汐区开展生物污损试验。结果表明,TEOS/IBTS复合乳液使得混凝土表面具有长期的疏水效果,海洋微生物不易在其表面粘附,可有效抑制微生物膜的形成。高通量测序表明,涂覆TEOS/IBTS复合涂层降低了混凝土表面微生物的物种丰富度和群落多样性,特别是易导致混凝土腐蚀的脱硫细菌门 (Desulfobacterota) 和厚壁菌门 (Firmicutes) 的丰度水平明显减少,细菌群落结构得到改善。微观测试结果显示,TEOS/IBTS复合涂层改善了混凝土表面的微观结构,降低了混凝土的生物污损程度。

关键词 复合涂层海洋暴露微生物腐蚀硅烷混凝土    
Abstract

The composite emulsion of ethyl orthosilicate (TEOS) and isobutyltriethoxysilane (IBTS) was prepared by a sol-gel method. The TEOS/IBTS composite coating was applied on concrete surface, which then was placed on the marine tidal zone to experience biofouling process. The results show that the TEOS/IBTS composite coating provides a long-term hydrophobic effect on the concrete surface. Hence, it is difficult for marine microorganisms to adhere on the TEOS/IBTS composite coated concrete surface, thereby, the formation of a microbial membrane may be retarded. High-throughput DNA sequencing results show that the application of the TEOS/IBTS composite coating reduced the species richness and community diversity of microorganisms on the concrete surface. In particular, the abundance levels of Desulfobacterota and Firmicutes, which are prone to cause concrete corrosion, were significantly reduced. Furthermore, the bacterial community structure on concrete surface was improved. CLSM and SEM results show that the TEOS/IBTS composite coating improved the surface morphology and characteristics of the concrete, thereby reduced the fouling degree of the concrete in marine environment.

Key wordscomposite coatings    marine exposure    microbial corrosion    silanes    concrete
收稿日期: 2020-12-10     
ZTFLH:  TU528  
基金资助:国家自然科学基金(51778308);江苏省土木工程材料重点实验室开放基金(CM2016-06)
通讯作者: 李绍纯     E-mail: lishaochun@qut.edu.cn
Corresponding author: LI Shaochun     E-mail: lishaochun@qut.edu.cn
作者简介: 刘珺,女,1996年生,硕士生

引用本文:

刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
Jun LIU, Yongjuan GENG, Shaochun LI, Ailing XU, Dongshuai HOU, Ang LIU, Xiulu LANG, Xu CHEN, Guofeng LIU. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 135-142.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.261      或      https://www.jcscp.org/CN/Y2022/V42/I1/135

TypeW/CCementSandMadacamWaterPCA
A0.438062712691521.46
B0.63006991191180---
表1  混凝土配合比
图1  不同海洋暴露时间混凝土 (w/c=0.4) 表面照片
图2  混凝土 (w/c=0.4) 表面接触角和表面能变化
图3  混凝土生物膜在门水平细菌多样性的相对丰度
Exposure timeSampleSobsAceChaoShannonSimpsonCoverage
3A3KB3311587.42868.842.710.10690.996
A3TEOS220721.94528.452.580.14070.993
B3KB6621670.131208.263.150.11080.988
B3TEOS283853.40625.721.450.47030.994
6A6KB9531633.451356.464.860.02300.988
A6TEOS6901159.69978.214.580.02470.992
B6KB17072519.702510.895.540.01110.976
B6TEOS10541498.091520.894.800.02170.986
9A9KB21883305.933043.745.500.01050.974
A9TEOS17143155.682770.695.410.03290.970
B9KB26303630.483577.176.130.01010.966
B9TEOS16142321.482330.095.660.01030.979
12A12KB25533667.023536.946.080.01010.966
A12TEOS19293034.153051.395.450.01200.979
B12KB28743915.383863.116.480.00510.964
B12TEOS20213051.503082.935.300.02100.969
表2  混凝土表面的细菌α-多样性指数
图4  混凝土 (w/c=0.4) 表面生物膜的CLSM图像
图5  混凝土 (w/c=0.4) 表面活/死细胞的粘附面积百分比
图6  混凝土 (w/c=0.4) 表面微观形貌及EDS结果
图7  TEOS/IBTS复合乳液防污机理图
1 Li Y F, Ning C Y. Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling [J]. Bioact. Mater., 2019, 4: 189
2 Tribollet B. Microbiologically influenced corrosion (MIC) in nuclear power plant systems and components [A]. Féron D. Nuclear Corrosion Science and Engineering [M]. Philadelphia: Woodhead Pub., 2012: 230
3 Hou B R, Lu D Z. Corrosion cost and preventive strategies in China [J]. Bull. Chin. Acad. Sci., 2018, 33: 601
3 侯保荣, 路东柱. 我国腐蚀成本及其防控策略 [J]. 中国科学院院刊, 2018, 33: 601
4 Wei S P, Sanchez M, Trejo D, et al. Microbial mediated deterioration of reinforced concrete structures [J]. Int. Biodeterior. Biodegrad., 2010, 64: 748
5 Ann K Y, Song H W. Chloride threshold level for corrosion of steel in concrete [J]. Corros. Sci., 2007, 49: 4113
6 Yi Y, Zhu D J, Guo S C, et al. A review on the deterioration and approaches to enhance the durability of concrete in the marine environment [J]. Cem. Concr. Compos., 2020, 113: 103695
7 George R P, Vishwakarma V, Samal S S, et al. Current understanding and future approaches for controlling microbially influenced concrete corrosion: A review [J]. Concr. Res. Lett., 2012, 3: 491
8 Gaylarde C, Silva M R, Warscheid T. Microbial impact on building materials: An overview [J]. Mater. Struct., 2003, 36: 342
9 Parker C D. The corrosion of concrete 1. the isolation of a species of bacterium associated with the corrosion of concrete exposed to atmospheres containing hydrogen sulphide [J]. Aust. J. Exp. Biol. Med. Sci., 1945, 23: 81
10 Fang J, Kong L J, Zhang B. Application effect of surface coating on concrete anti-sewage corrosion [A]. Abstracts of the 3rd China International Composite Materials Science and Technology Conference-Session 6-10 [C]. Hangzhou, 2017: 1
10 方珺, 孔丽娟, 张蓓. 表面涂层对混凝土抗污水腐蚀的应用效果 [A]. 第三届中国国际复合材料科技大会摘要集-分会场6-10 [C]. 杭州, 2017: 1
11 Lv J F, Li J, Mo Z L, et al. Microorganism identification by 16S rDNA of concrete surface exposed to a tidal zone [J]. J. Harbin Eng.Univ., 2010, 31: 1386
11 吕建福, 李杰, 莫照兰等. 海洋潮差区混凝土表面微生物16S rDNA分子鉴定 [J]. 哈尔滨工程大学学报, 2010, 31: 1386
12 Lv J F, Ba H J. Splash zone concrete of marine concrete engineering by SEM and surface microorganism identification by 16S rRNA [J]. J. Wuhan Univ. Technol., 2009, 31(2): 28
12 吕建福, 巴恒静. 海洋浪溅区混凝土SEM及表面微生物16S rRNA鉴定 [J]. 武汉理工大学学报, 2009, 31(2): 28
13 Zuo R J. Biofilms: Strategies for metal corrosion inhibition employing microorganisms [J]. Appl. Microbiol. Biotechnol., 2007, 76: 1245
14 Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
15 Gao L X, Ding R Q, Yao Y, et al. Microbial-induced corrosion of concrete: Mechanism, influencing factors, evaluation indices, and proventive techniques [J]. Mater. Rep., 2008, 32: 503
15 高礼雄, 丁汝茜, 姚燕等. 混凝土的微生物腐蚀: 机理、影响因素、评价指标及防护技术 [J].材料导报, 2018, 32: 503
16 Wong L S, Oweida A F M, Kong S Y, et al. The surface coating mechanism of polluted concrete by Candida ethanolica induced calcium carbonate mineralization [J]. Const. Build. Mater., 2020, 257: 119482
17 Elnaggar E M, Elsokkary T M, Shohide M A, et al. Surface protection of concrete by new protective coating [J]. Const. Build. Mater., 2019, 220: 245
18 Li S C, Zhang W J, Liu J, et al. Protective mechanism of silane on concrete upon marine exposure [J]. Coatings, 2019, 9: 558
19 Chen X. Preparation of TEOS isobutyl triethoxysilane compound emulsion and its effect on the properties of cement based material durability [D]. Qingdao: Qingdao Technological University, 2016
19 陈旭. TEOS/异丁基三乙氧基硅烷复合乳液的制备及其对水泥基材料耐久性能的影响 [D]. 青岛: 青岛理工大学, 2016
20 Zhao W J, Chen Z F, Mo M T, et al. Progress in surface tailoring for enviromentfriendly antibiofouling materials [J]. China Surf. Eng., 2014, 27(5): 14
20 赵文杰, 陈子飞, 莫梦婷等. 绿色海洋防污材料的表面构筑研究进展 [J]. 中国表面工程, 2014, 27(5): 14
21 Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools [J]. Nucleic Acids Res., 2013, 41(D1): D590
22 Kuczynski J, Stombaugh J, Walters W A, et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities [J]. Curr. Protoc. Bioinform. 2012, Chapter: 1
23 Dubosc A, Escadeillas G, Blanc P J. Characterization of biological stains on external concrete walls and influence of concrete as underlying material [J]. Cem. Concr. Res., 2001, 31: 1613
24 Giannantonio D J, Kurth J C, Kurtis K E, et al. Effects of concrete properties and nutrients on fungal colonization and fouling [J]. Int. Biodeterior. Biodegrad., 2009, 63: 252
25 Ito T, Okabe S, Satoh H, et al. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions [J]. Appl. Environ. Microbiol., 2002, 68: 1392
26 Jørgensen B B, Bak F. Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark) [J]. Appl. Environ. Microbiol., 1991, 57: 847
27 Okabe S, Santegoeds C M, Watanabe Y, et al. Successional development of sulfate-reducing bacterial populations and their activities in an activated sludge immobilized agar gel film [J]. Biotechnol. Bioeng., 2002, 78: 119
[1] 李建永, 代殿宇, 钱程, 刁书磊, 刘金山, 路通鑫, 孙勇, 肖凤娟. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 156-162.
[2] 唐荣茂, 刘光明, 师超, 张帮彦, 田继红, 甘鸿禹, 刘永强. 十二烷基苯磺酸钠在模拟混凝土孔隙液中对Q235钢缓蚀及吸附行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[3] 丁玉康, 陈国美, 倪自丰, 刘雅玄, 钱善华, 卞达, 赵永武. 六方氮化硼改性硅烷膜耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[4] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[5] 何勇君, 张天遂, 王海涛, 张斐, 李广芳, 刘宏芳. 微生物腐蚀杀菌剂研究进展[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[6] 吕美英, 李振欣, 杜敏, 万紫轩. 培养基对微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[7] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[8] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[9] 马麒, 蔡景顺, 穆松, 周霄骋, 刘凯, 刘建忠, 刘加平. 有机氨基醇阻锈剂在混凝土模拟孔隙液和砂浆试块中对钢筋的阻锈作用[J]. 中国腐蚀与防护学报, 2021, 41(5): 659-666.
[10] 罗伟文, 季韬, 林魁. 水泥类型对海砂混凝土在生物硫酸腐蚀下劣化影响的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 691-696.
[11] 陈宣东, 章青, 顾鑫, 李星. 基于概率分析的钢筋混凝土结构服役寿命预测研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 673-678.
[12] 王彭生, 李传夫, 倪静姁. 硅烷保护混凝土结构耐久性提升分析与寿命计算[J]. 中国腐蚀与防护学报, 2021, 41(5): 712-716.
[13] 朱哲, 蔡景顺, 洪锦祥, 穆松, 周霄骋, 马麒, 陈翠翠. 水化响应纳米材料对钢筋混凝土整体耐蚀性能影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 732-736.
[14] 丁清苗, 高宇宁, 侯文亮, 秦永祥. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[15] 李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.