Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 127-134    DOI: 10.11902/1005.4537.2021.212
  研究报告 本期目录 | 过刊浏览 |
高铁动态交流干扰下管道钢的腐蚀行为试验研究
邓佳丽1, 闫茂成2(), 高博文2, 张辉2
1.山东实华天然气有限公司 青岛 266071
2.中国科学院金属研究所 国家金属腐蚀控制工程技术研究中心 沈阳 110016
Corrosion Behavior of Pipeline Steel Under High-speed Railway Dynamic AC Interference
DENG Jiali1, YAN Maocheng2(), GAO Bowen2, ZHANG Hui2
1.Shandong Shihua Natural Gas Co. Ltd. , Qingdao 266071, China
2.National Engineering Research Center for Corrosion Control, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(19954 KB)   HTML
摘要: 

利用电化学测试、表面分析及失重分析技术,研究了模拟高铁动态交流干扰下管道钢的腐蚀行为和规律及阴极保护的有效性。结果表明,动态交流干扰下,阴极保护电位向负方向偏移,交流干扰增大管道的阴极保护电流密度;动态交流干扰下,随干扰水平增加,管道钢腐蚀程度增加,点蚀坑明显加深。阴极保护明显减缓交流干扰试样的腐蚀程度,腐蚀速率降为不施加阴极保护试样的一半;本实验条件下,-1.0 V阴极保护电位可充分保护低于水平100 A/m2的动态交流干扰腐蚀。

关键词 管道钢杂散电流交流干扰交流腐蚀阴极保护    
Abstract

Corrosion behavior of a pipeline steel in an artificial soil in the presence of dynamic AC interference, as a simulation of the interference of high-speed railway, is studied by means of mass-loss method, electrochemical measurements and surface analysis technique. The results show that, in the presence of dynamic AC interference, cathodic protection potential shifts to the negative direction, while the AC interference can increase the cathodic protection current density of the pipeline steel coupon. With the increase of interference intensity, the corrosion degree of pipeline steel increases and the pits deepen obviously. Cathodic protection (CP) can significantly slow down the corrosion degree of pipeline samples induced by the AC interference, and the corrosion rate is reduced to half of that of samples without cathodic protection. In the precent experimental case, the applied potential -1.0 V CP can fully protect the pipeline steel from corrosion induced by the dynamic AC interference with stray current below 100 A/m2.

Key wordspipeline steel    stray current interference    AC interference    AC corrosion    cathodic protection
收稿日期: 2021-08-24     
ZTFLH:  TG174  
基金资助:国家自然科学基金(52071320);国家材料环境腐蚀;平台项目(2005DKA10400)
通讯作者: 闫茂成     E-mail: yanmc@imr.ac.cn
Corresponding author: YAN Maocheng     E-mail: yanmc@imr.ac.cn
作者简介: 邓佳丽,女,1987年生,工程师

引用本文:

邓佳丽, 闫茂成, 高博文, 张辉. 高铁动态交流干扰下管道钢的腐蚀行为试验研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
Jiali DENG, Maocheng YAN, Bowen GAO, Hui ZHANG. Corrosion Behavior of Pipeline Steel Under High-speed Railway Dynamic AC Interference. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 127-134.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.212      或      https://www.jcscp.org/CN/Y2022/V42/I1/127

图1  动态交流干扰实验装置示意图
图2  不同的交流电流密度干扰实验原理图
Test conditionCP potential VSCEAC interference A·m-2Interference time minInterval time minTotal test time / dCorrosion rate mm / a
CP+100 A·m-2 AC-1.00 V1004650.024
CP+ 300A·m-2 AC-1.00 V3004650.092
100 A·m-2 ACOCP1004650.046
300 A·m-2 ACOCP3004650.195
表1  动态交流干扰条件下的实验参数设置
图3  试样在不同交流电流密度干扰水平下的极化曲线
图4  动态交流干扰下管道钢试样的阴极保护电位和交流电压的变化
图5  无阴极保护管道钢试样动态交流干扰试验后表面腐蚀产物形貌
图6  试样表面腐蚀产物XRD谱
图7  阴极保护管道钢动态交流干扰X65钢试验后试样宏观形貌
图8  阴极保护管道钢动态交流干扰试验后试样表面腐蚀产物形貌
图9  动态交流干扰试验后管道钢试样表面腐蚀形貌SEM图
图10  动态交流干扰试验后管道钢试样表面腐蚀坑CLSM形貌图
1 Matta V, Kumar G. Unbalance and voltage fluctuation study on AC traction system [A]. Electric Power Quality and Supply Reliability [C]. Chennai, India, 2014: 315
2 Mariscotti A. Distribution of the traction return current in AC and DC electric railway systems [J]. IEEE Trans. Power Deliv., 2003, 18: 1422
3 Ouadah M, Touhami O, Ibtiouen R, et al. Corrosive effects of the electromagnetic induction caused by the high voltage power lines on buried X70 steel pipelines [J]. Int. J. Elec. Power, 2017, 91: 34
4 Charalambous C A, Demetriou A, Lazari A L, et al. Effects of electromagnetic interference on underground pipelines caused by the operation of high voltage AC traction systems: the impact of harmonics [J]. IEEE Trans. Power Deliv., 2018, 33: 2664
5 Brenna A, Ormellese M, Lazzari L. Electromechanical breakdown mechanism of passive film in alternating current-related corrosion of carbon steel under cathodic protection condition [J]. Corrosion, 2016, 72: 1055
6 Micu D D, Christoforidis G C, Czumbil L. AC interference on pipelines due to double circuit power lines: A detailed study [J]. Electr. Power Syst. Res., 2013, 103: 1
7 Funk D, Schoeneich H G. Probleme bei der Bewertung der Wechselstrom-Korrosions-gefaehrdung von Rohrleitungen mit Probeblechen [J]. 3R International, 2002, 41: 582
8 Floyd R. Testing and mitigation of AC corrosion on 8 Line: A field study [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
9 Liang Y, Du Y X. Research progress on evaluation criteria and mechanism of corrosion under cathodic protection and AC Interference [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 215
9 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 215
10 Hanson H R, Smart J. AC corrosion on a pipeline located in a HVAC utility corridor [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
11 Wang X L, Yan M C, Shu Y, et al. AC interference corrosion of pipeline steel beneath delaminated coating with holiday [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 341
11 王晓霖, 闫茂成, 舒韵等. 破损涂层下管线钢的交流电干扰腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 341
12 Lalvani S B, Zhang G. The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part I [J]. Corros. Sci., 1995, 37: 1567
13 Song H S, Kho Y T, Kim Y G, et al. Competition of AC and DC current in AC corrosion under cathodic protection [A]. Corrosion 2002 [C]. Denver, Colorado, 2002
14 Weng Y J, Wang N. Carbon steel corrosion induced by alternating current [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 270
14 翁永基, 王宁. 碳钢交流电腐蚀机理的探讨 [J]. 中国腐蚀与防护学报, 2011, 31: 270
15 Büchler M. Alternating current corrosion of cathodically protected pipelines: Discussion of the involved processes and their consequences on the critical interference values [J]. Mater. Corros., 2012, 63: 1181
16 Zhang R, Vairavanathan P R, Lalvani S B. Perturbation method analysis of AC-induced corrosion [J]. Corros. Sci., 2008, 50: 1664
17 Ghanbari E, Iannuzzi M, Lillard R S. The mechanism of alternating current corrosion of API grade X65 pipeline steel [J]. Corrosion, 2016, 72: 1196
18 Chen L, Du Y X, Liang Y, et al. Research on corrosion behaviour of X65 pipeline steel under dynamic AC interference [J]. Corros. Eng. Sci. Technol., 2021, 56: 219
19 Wang X H, Yang Y, Chen Y C, et al. Effect of alternating current on corrosion behavior of X100 pipeline steel in a simulated solution for soil medium at Korla district [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 259
19 王新华, 杨永, 陈迎春等. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 259
20 Xiao Y W, Du Y X, Tang D Z, et al. Study on the influence of environmental factors on AC corrosion behavior and its mechanism [J]. Mater. Corros., 2018, 69: 601
21 Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment [J]. Acta Metall. Sin., 2017, 53: 575
21 万红霞, 宋东东, 刘智勇等. 交流电对X80钢在近中性环境中腐蚀行为的影响 [J]. 金属学报, 2017, 53: 575
22 Büchler M, Schöneich H G. Investigation of alternating current corrosion of cathodically protected pipelines: Development of a detection method, mitigation measures, and a model for the mechanism [J]. Corrosion, 2009, 65: 578
[1] 庄大伟, 杜艳霞, 陈涛涛, 鲁丹平. 区域阴极保护数值模拟边界条件反演计算方法研究及应用[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
[2] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[3] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[4] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[5] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[6] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[7] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[8] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[9] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[10] 邱萍, 杨连捷, 宋玉, 杨鸿飞. 添加DMF对TiO2薄膜光生阴极保护性能影响研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[11] 寇杰, 张新策, 崔淦, 杨宝安. 储罐底板阴极保护电位分布研究进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[12] 王晓霖, 闫茂成, 舒韵, 孙成, 柯伟. 破损涂层下管线钢的交流电干扰腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[13] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[14] 李伟,杜艳霞,姜子涛,路民旭. 电气化铁路对埋地管道交流干扰的研究进展[J]. 中国腐蚀与防护学报, 2016, 36(5): 381-388.
[15] 杨霜,唐囡,闫茂成,赵康文,孙成,许进,于长坤. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.