Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 120-126    DOI: 10.11902/1005.4537.2020.276
  研究报告 本期目录 | 过刊浏览 |
超声冲击改善P355NL1钢焊接接头腐蚀疲劳性能研究
王永祥, 何柏林(), 李力
华东交通大学材料科学与工程学院 南昌 330013
Improvement of Corrosion Fatigue Performance of P355NL1 Steel Welded Joint by Ultrasonic Impact
WANG Yongxiang, HE Bolin(), LI Li
School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
全文: PDF(6192 KB)   HTML
摘要: 

对P355NL1钢焊接接头进行超声冲击处理,研究超声冲击对腐蚀疲劳性能的影响。利用光学显微镜和扫描电镜对超声冲击前后的表层显微结构以及腐蚀疲劳失效断口进行分析,利用电化学工作站对超声冲击前后试样电化学腐蚀速率进行测定。结果表明,当试样处于6% (质量分数) NaCl腐蚀溶液中时,焊态试样疲劳强度下降12.5%;在6%NaCl腐蚀液和水介质中,冲击态试样相较于焊态试样疲劳强度分别提高了75%和53%,S-N曲线斜率分别改变75.4%和60.4%。经超声冲击处理后试样表层产生明显的塑性变形层,最大变形层深度约350 μm;冲击之后试样的疲劳寿命有很明显提高,疲劳断裂位置也由焊趾处转移到焊缝或者母材区,腐蚀坑数目明显减少。表明超声冲击可以细化晶粒,同时降低应力集中现象,消除有害残余拉应力,引入有益的残余压应力,降低电化学腐蚀速率,提高焊接接头的腐蚀疲劳性能。

关键词 超声冲击焊接接头疲劳腐蚀    
Abstract

The effect of ultrasonic impact on corrosion fatigue properties of P355NL1 steel welded joints was studied, while the surface morphology and the fractured surface were characterized by optical microscope and scanning electron microscope. Meanwhile, the electrochemical corrosion rate of the weld joints before and after ultrasonic impact was comparatively examined by electrochemical workstation. The results show that the fatigue strength of the welded joint in the as welded state decreases by 12.5% in 6% (mass fraction) NaCl corrosion solution in comparison with that of the substrate. In 6%NaCl solution and water, the fatigue strength of the ultrasonic impacted welded joints is increased by 75% and 53%, and the slope of S-N curve is changed by 75.4% and 60.4%, respectively, in comparison with that in the welded state. The maximum depth of the plastic deformation layer is about 350 μm. The fatigue life of the welded joints is significantly improved by the ultrasonic impact, correspondingly, the fatigue fracture location is also transferred from the weld toe to the weld or base metal area, and the number of corrosion pits is significantly reduced. The results clearly show that the ultrasonic impact can refine grain, reduce stress concentration, eliminate harmful residual tensile stress, introduce beneficial residual compressive stress, reduce electrochemical corrosion rate, and improve the corrosion fatigue performance of welded joints of P355NL1 steel.

Key wordsultrasonic impact    welded joint    fatigue    corrosion
收稿日期: 2020-12-26     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51365014);江西省工业支撑重点项目(20161BBE50072)
通讯作者: 何柏林     E-mail: hebolin@163.com
Corresponding author: HE Bolin     E-mail: hebolin@163.com
作者简介: 王永祥,男,1996年生,硕士生

引用本文:

王永祥, 何柏林, 李力. 超声冲击改善P355NL1钢焊接接头腐蚀疲劳性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 120-126.
Yongxiang WANG, Bolin HE, Li LI. Improvement of Corrosion Fatigue Performance of P355NL1 Steel Welded Joint by Ultrasonic Impact. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 120-126.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.276      或      https://www.jcscp.org/CN/Y2022/V42/I1/120

图1  P355NL1钢焊接接头疲劳试样
Sample numberStress rangeCycle timesFracture location
12258.00×105Weld toe
22153.50×106Weld toe
32052.69×106Weld toe
41954.88×106Weld toe
51851.63×107Weld toe
61755.83×106Weld toe
71651.80×107Weld toe
81552.25×107Weld toe
91453.12×107Weld toe
101406.12×107Weld toe
111351.59×108Weld toe
121304.40×108Weld toe
131201.00×109Not broken
表1  焊态试样在水介质中的疲劳寿命
Sample numberStress rangeCycle timesFracture location
12156.00×105Weld toe
22101.60×106Weld toe
32003.00×106Weld toe
41904.12×106Weld toe
51801.30×106Weld toe
61701.62×107Weld toe
71601.80×107Weld toe
81502.16×107Weld toe
91402.76×107Weld toe
101307.20×107Weld toe
111202.08×108Weld toe
121155.00×108Weld toe
131101.00×109Not broken
表2  焊态试样在6%NaCl介质中的疲劳寿命
Sample numberStress rangeCycle timesFracture location
13101.08×106Soldering seam
23001.50×106Soldering seam
32903.40×106Soldering seam
42805.04×106Base metal
52706.33×106Soldering seam
62609.20×106Base metal
72501.03×107Base metal
82402.40×107Soldering seam
92304.30×107Soldering seam
102201.20×108Soldering seam
112155.46×108Soldering seam
122101.00×109Not broken
132101.00×109Not broken
表3  超声冲击试样在6%NaCl介质中的疲劳寿命
图2  疲劳试样S-N曲线
SampleEVE¯VImA·cm-2I¯mA·cm-2Vmm·a-1V¯mm·a-1
UIT-1.059-1.0620.03560.03740.45220.4424
-1.0650.03870.4397
-1.0620.03790.4352
As welded-1.044-1.0490.04190.04250.49350.5028
-1.0520.04300.5163
-1.0470.04260.4986
表4  超声冲击态试样与焊态试样电化学腐蚀数据表
图3  焊接接头在6%NaCl溶液中未经超声冲击和经过超声冲击处理的极化曲线
图4  超声冲击后表层塑变层形貌
图5  未超声冲击疲劳试样断口形貌
图6  超声冲击疲劳试样断口形貌
1 Yang J Y, Wang X L, Sun H Y, et al. Research on material development and application of EMU bogie frame [J]. Found. Technol., 2020, 41: 736
1 杨集友, 王显亮, 孙浩晏等. 动车组转向架构架材料的研发及应用 [J]. 铸造技术, 2020, 41: 736
2 Wang W J, Hui X L, Ma J J. Fatigue crack mechanism research on high speed train equipment cabin frame [J]. J. Mech. Eng., 2015, 51(6): 142
2 王文静, 惠晓龙, 马纪军. 高速列车设备舱支架疲劳裂纹机理研究 [J]. 机械工程学报, 2015, 51(6): 142
3 Zhang Y Y, Sun S G, Yang G X, et al. Load characteristics and fatigue damage assessment of high speed train bogie frame [J]. J. Mech. Eng., 2020, 56(10): 163
3 张亚禹, 孙守光, 杨广雪等. 高速列车转向架构架载荷特征及疲劳损伤评估 [J]. 机械工程学报, 2020, 56(10): 163
4 Shahani A R, Shakeri I. Experimental evaluation of fatigue behaviour of thin Al5456 welded joints [J]. Fatigue Fract. Eng. Mater. Struct., 2020, 43: 965
5 Jacob A, Mehmanparast A, D'Urzo R, et al. Experimental and numerical investigation of residual stress effects on fatigue crack growth behaviour of S355 steel weldments [J]. Int. J. Fatigue, 2019, 128: 105196
6 Zhang Z G, Zhou Z Y, Liu C Y. Corrosion fatigue fracture failure analysis of high-strength aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 48
6 张正贵, 周兆元, 刘长勇. 高强度铝合金构件腐蚀疲劳失效分析 [J]. 中国腐蚀与防护学报, 2008, 28: 48
7 Li D D, Zheng Y, Chu M J, et al. Research progress of ultrasonic impact treatment technology for welding structures [J]. Mater. Prot., 2019, 52(11): 139
7 李东东, 郑云, 初明进等. 超声冲击强化技术处理焊接结构的研究进展 [J]. 材料保护, 2019, 52(11): 139
8 Chen G R, Gong B M, Meng Q Y, et al. Fatigue assessment of welded joint improved by ultrasonic impact treatment [J]. Trans. China Weld. Inst., 2019, 40(8): 118
8 陈广冉, 龚宝明, 孟庆禹等. 超声冲击态焊接接头疲劳性能分析 [J]. 焊接学报, 2019, 40(8): 118
9 He B L, Feng Y M, Li L. Effects of UIT and weld reinforcement on fatigue properties of 6082 aluminum alloy welded joint [J]. Chin. J. Nonferrous Met., 2019, 29: 1377
9 何柏林, 封亚明, 李力. 超声冲击及焊缝余高对6082铝合金焊接接头疲劳性能的影响 [J]. 中国有色金属学报, 2019, 29: 1377
10 Wang D P, Huo L X, Zhang Y F. Influence of undercuts on fatigue property of welded joints by TIG dressing treatment [J]. J. Tianjin Univ., 2004, 37: 570
10 王东坡, 霍立兴, 张玉凤. TIG熔修法改善含咬边缺陷焊接接头疲劳性能 [J]. 天津大学学报, 2004, 37: 570
11 Govindaraj R, Sudhakaran R, Eazhil K M, et al. Influence of high-frequency mechanical peening on the fatigue life of stainless steel joints in corrosive environment [J]. Trans. Indian Inst. Met., 2019, 72: 3233
12 Daavari M, Vanini S A S. Corrosion fatigue enhancement of welded steel pipes by ultrasonic impact treatment [J]. Mater. Lett., 2015, 139: 462
13 Singh V, Marya M, Roy I, et al. Surface property enhancement of UNS N07718 and G41400 by ultrasonic impact treatment [J]. Mater. Sci. Forum, 2014, 783-786: 2863
14 Zhang D H. Effect of ultrasonic impact treatment on corrosion fatigue behavior of A106-B steel welded pipes [J]. Mater. Sci. Eng. Powder Metall., 2019, 24: 267
14 张德红. 超声冲击处理对A106-B焊管腐蚀疲劳的影响 [J]. 粉末冶金材料科学与工程, 2019, 24: 267
15 Deng L, Yan W C, Nie L. A simple corrosion fatigue design method for bridges considering the coupled corrosion-overloading effect [J]. Eng. Struct., 2019, 178: 309
16 Wang Y, Zheng Y Q. Research on corrosion fatigue performance and multiple fatigue sources fracture process of corroded steel wires [J]. Adv. Civil Eng., 2019, 2019: 1
17 Wolf M, Pfennig A. Failure of standard duplex stainless steel X2CrNiMoN22-5-3 under corrosion fatigue in geothermal environment [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2020, 894: 012015
18 Petrov Y N, Prokopenko G I, Mordyuk B N, et al. Influence of microstructural modifications induced by ultrasonic impact treatment on hardening and corrosion behavior of wrought Co-Cr-Mo biomedical alloy [J]. Mater. Sci. Eng., 2016, 58C: 1024
19 Liu J, Du Y C, Miao G M, et al. Effect of ultrasonic impact on welding fatigue life and stress corrosion resistance of 7N01P-T4 aluminum alloy welded joint [J]. Hot Work. Technol., 2020, 49(23): 19
19 刘军, 杜亦璨, 苗国民等. 超声冲击对7N01P-T4铝合金焊接接头疲劳寿命及应力腐蚀性能的影响 [J]. 热加工工艺, 2020, 49(23): 19
20 He B L, Xie X T, Ding J H, et al. Mechanism of improving Ultra-high cycle fatigue properties of MB8 magnesium alloy welded joint by ultrasonic impact treatment [J]. Rare Met. Mater. Eng., 2019, 48: 650
20 何柏林, 谢学涛, 丁江灏等. 超声冲击改善MB8镁合金焊接接头超高周疲劳性能的机理 [J]. 稀有金属材料与工程, 2019, 48: 650
21 Yue L L, Ma B J. Effect of ultrasonic surface rolling process on corrosion behavior of AZ31B Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 560
21 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 560
22 Ma Y H. Effect of shot peening on oxidation resistance of super 304H steel in supercritical steam [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 245
22 马云海. 喷丸处理对Super304H钢抗蒸汽氧化性能的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 245
23 Wang D P, Gong B M, Wu S P, et al. Research review on fatigue life improvement of welding joint and structure [J]. J. East China Jiaotong Univ., 2016, 33(6): 1
23 王东坡, 龚宝明, 吴世品等. 焊接接头与结构疲劳延寿技术研究进展综述 [J]. 华东交通大学学报, 2016, 33(6): 1
24 Jin C J, Chen B Q, Li W, et al. Effect of laser shock peening on corrosion resistance of AISI430 ferritic stainless steel [J]. Laser Technol., 2020, 44: 212
24 金成嘉, 陈炳泉, 李纬等. 激光冲击对AISI430铁素体不锈钢抗蚀性影响 [J]. 激光技术, 2020, 44: 212
25 Liu J. Effect of surface nanocrystallization on corrosion resistance of Nickel-based alloy 690 [D]. Nanchang: Jiangxi University of Science and Technology, 2020
25 刘江. 表面纳米化对镍基690合金抗腐蚀性能的影响 [D]. 南昌: 江西理工大学, 2020
[1] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[2] 王中琪, 许春香, 杨丽景, 田林海, 黄涛, 史义轩, 杨文甫. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[3] 刘术辉, 刘斌, 徐大伟, 刘蔚, 陈凡伟, 刘思琪. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[4] 邓佳丽, 闫茂成, 高博文, 张辉. 高铁动态交流干扰下管道钢的腐蚀行为试验研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[5] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[6] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[7] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[8] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[9] 刘冬, 刘静, 黄峰, 杜丽影, 彭文杰. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型[J]. 中国腐蚀与防护学报, 2022, 42(1): 163-168.
[10] 张兹瑜, 吴欣强, 韩恩厚, 柯伟. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[11] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[12] 何勇君, 张天遂, 王海涛, 张斐, 李广芳, 刘宏芳. 微生物腐蚀杀菌剂研究进展[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[13] 余德远, 刘智勇, 杜翠薇, 黄辉, 林楠. 管线钢土壤应力腐蚀开裂研究进展及展望[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[14] 吕美英, 李振欣, 杜敏, 万紫轩. 培养基对微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[15] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.