Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 25-33    DOI: 10.11902/1005.4537.2020.221
  综合评述 本期目录 | 过刊浏览 |
镍铝青铜合金海水腐蚀行为研究进展
张赪栋, 刘斌(), 石泽耀, 刘岩, 曹青敏, 蹇冬辉
北京化工大学材料科学与工程学院 材料电化学过程与技术北京市重点实验室 北京 100029
Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater
ZHANG Chengdong, LIU Bin(), SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui
Beijing Key Laboratory of Materials Electrochemical Process and Technology, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(728 KB)   HTML
摘要: 

如何提高镍铝青铜的综合性能,尤其是在更苛刻海水环境条件下的耐腐蚀性能,成为亟待解决的问题。本文针对镍铝青铜合金的腐蚀特点、影响因素、提高耐蚀性的方法等进行了系统讨论,分析了存在的问题,提出了相应的解决途径,并对其未来的研究发展方向进行了展望。

关键词 镍铝青铜耐腐蚀性能合金化表面改性    
Abstract

How to improve the comprehensive performance of nickel-aluminum bronze (NAB) alloys, has become an imperious demand, especially their corrosion resistance in more severe seawater environments. In this paper, the corrosion characteristics of NAB alloys and the relevant influencing factors were systematically discussed. The common methods of improving corrosion resistance, such as surface modification and casting processing were proposed. It is expected that the corrosion resistance of NAB alloys can be further improved with appropriate alloying approach and adjusting of the alloy composition. Finally, the future research and development directions were also prospected.

Key wordsnickel aluminum bronze    corrosion resistance    alloying    surface modification
收稿日期: 2020-11-03     
ZTFLH:  TG174  
基金资助:中央高校基本科研业务费专项(buctrc201730)
通讯作者: 刘斌     E-mail: liubin@mail.buct.edu.cn;liubindr@163.com
Corresponding author: LIU Bin     E-mail: liubin@mail.buct.edu.cn;liubindr@163.com
作者简介: 张赪栋,男,1996年生,硕士生

引用本文:

张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
Chengdong ZHANG, Bin LIU, Zeyao SHI, Yan LIU, Qingmin CAO, Donghui JIAN. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 25-33.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.221      或      https://www.jcscp.org/CN/Y2022/V42/I1/25

1 Song D J, Hu G Y, Lu H, et al. Survey of progress on the research and practice of Nickel-Aluminium braze [J]. Mater. Rep., 2007, 21(S3): 450
1 宋德军, 胡光远, 卢海等. 镍铝青铜合金的应用与研究现状 [J]. 材料导报, 2007, 21(S3): 450
2 Nie W, Yao X H, Lu B C. Technical of heavy duty coatings for marine engineering [J]. Mar. Technol., 2016, (6): 82
2 聂薇, 姚晓红, 卢本才. 海洋工程重防腐技术 [J]. 造船技术, 2016, (6): 82
3 Zhang Z Q, Guo Z L, Lei Z F. Applications of copper alloy in shipbuilding [J]. Dev. Appl. Mater., 2006, 21(5): 43
3 张智强, 郭泽亮, 雷竹芳. 铜合金在舰船上的应用 [J]. 材料开发与应用, 2006, 21(5): 43
4 Tan K S, Wharton J A, Wood R J K. Solid particle erosion-corrosion behaviour of a novel HVOF nickel aluminium bronze coating for marine applications-correlation between mass loss and electrochemical measurements [J]. Wear, 2005, 258: 629
5 Barik R C, Wharton J A, Wood R J K, et al. Erosion and erosion-corrosion performance of cast and thermally sprayed nickel-aluminium bronze [J]. Wear, 2005, 259: 230
6 Hasan F, Jahanafrooz A, Lorimer G W, et al. The morphology, crystallography, and chemistry of phases in as-cast nickel-aluminum bronze [J]. Metall. Trans., 1982, 13A: 1337
7 Wu Z, Cheng Y F, Liu L, et al. Effect of heat treatment on microstructure evolution and erosion-corrosion behavior of a nickel-aluminum bronze alloy in chloride solution [J]. Corros. Sci., 2015, 98: 260
8 Müller S, Wolverton C, Wang L W, et al. Prediction of alloy precipitate shapes from first principles [J]. Europhys. Lett., 2001, 55: 33
9 Culpan E A, Rose G. Microstructural characterization of cast nickel aluminium bronze [J]. J. Mater. Sci., 1978, 13: 1647
10 Neodo S, Carugo D, Wharton J A, et al. Electrochemical behaviour of nickel-aluminium bronze in chloride media: Influence of pH and benzotriazole [J]. J. Electroanal. Chem., 2013, 695: 38
11 Kear G, Barker B D, Stokes K, et al. Flow influenced electrochemical corrosion of nickel aluminium bronze-part I. Cathodic polarisation [J]. J. Appl. Electrochem., 2004, 34: 1235
12 Kear G, Barker B D, Stokes K, et al. Flow influenced electrochemical corrosion of nickel aluminium bronze-part II. Anodic polarisation and derivation of the mixed potential [J]. J. Appl. Electrochem., 2004, 34: 1241
13 Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media-a critical review [J]. Corros. Sci., 2004, 46: 109
14 Badawy W A, El-Sherif R M, Shehata H. Electrochemical stability of Cu-10Al-5Ni alloy in chloride-sulfate electrolytes [J]. Electrochim. Acta, 2009, 54: 4501
15 Wang Y M, Sigler D R, Radovic D. Corrosion of copper braze alloys in sulfidecontaining water [A]. Proceedings of Corrosion 2008 [C]. New Orleans, LA, USA, 2008: 22
16 Badawy W A, El-Sherif R M, Shehata H. Electrochemical behavior of aluminum bronze in sulfate-chloride media [J]. J. Appl. Electrochem., 2007, 37: 1099
17 Rajahram S S, Harvey T J, Wood R J K. Erosion-corrosion resistance of engineering materials in various test conditions [J]. Wear, 2009, 267: 244
18 Dai S L. Cast Non-Ferrous Alloy [M]. 3rd ed. Beijing: China Machine Press, 2011
18 戴圣龙. 铸造非铁合金 [M]. 3版. 北京: 机械工业出版社, 2011
19 Tsyrul'nyk O T. Influence of temperature on the corrosion, corrosion fatigue, and cavitation fracture of steel in tap water [J]. Mater. Sci., 2000, 36: 136
20 Tuthill A H. Guidelines for the use of copper alloys in seawater [J]. Mater. Perform., 1987, 26: 12
21 Schüssler A, Exner H E. The corrosion of nickel-aluminium bronzes in seawater-I. Protective layer formation and the passivation mechanism [J]. Corros. Sci., 1993, 34: 1793
22 Schüssler A, Exner H E. The corrosion of nickel-aluminium bronzes in seawater—II. The corrosion mechanism in the presence of sulphide pollution [J]. Corros. Sci., 1993, 34: 1803
23 Wharton J A, Barik R C, Kear G, et al. The corrosion of nickel-aluminium bronze in seawater [J]. Corros. Sci., 2005, 47: 3336
24 Zhang Z, Yao L A, Gan F X. The effect of surface film on electrochemical behavior of Cu-Ni-alloy [J]. J. Chin. Soc. Corros. Prot., 1987, 7: 143
24 张哲, 姚禄安, 甘复兴. 铜镍合金表面膜对其电化学行为的影响 [J]. 中国腐蚀与防护学报, 1987, 7: 143
25 Ding Y, Zhao R, Qin Z B, et al. Evolution of the corrosion product film on nickel-aluminum bronze and its corrosion behavior in 3.5wt%NaCl solution [J]. Materials, 2019, 12: 209
26 El-Meligi A A. Corrosion behaviours of copper alloy in solutions containing Na2SO4 and NaCl with different concentrations [J]. J. Mater. Sci. Technol., 2002, 18: 549
27 Wharton J A, Stokes K R. The influence of nickel-aluminium bronze microstructure and crevice solution on the initiation of crevice corrosion [J]. Electrochim. Acta, 2008, 53: 2463
28 Fonlupt S, Bayle B, Delafosse D, et al. Role of second phases in the stress corrosion cracking of a nickel-aluminium bronze in saline water [J]. Corros. Sci., 2005, 47: 2792
29 Al-Hashem A, Riad W. The role of microstructure of nickel-aluminium-bronze alloy on its cavitation corrosion behavior in natural seawater [J]. Mater. Charact., 2002, 48: 37
30 Huang G Q. Corrosion of copper alloys in marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 65
30 黄桂桥. 铜合金在海洋飞溅区的腐蚀 [J]. 中国腐蚀与防护学报, 2005, 25: 65
31 Tang C H, Cheng F T, Man H C. Improvement in cavitation erosion resistance of a copper-based propeller alloy by laser surface melting [J]. Surf. Coat. Technol., 2004, 182: 300
32 Tang C H, Cheng F T, Man H C. Effect of laser surface melting on the corrosion and cavitation erosion behaviors of a manganese-nickel-aluminium bronze [J]. Mater. Sci. Eng., 2004, 373A: 195
33 Zhu J, Jiang Y J, He D C. Comparison of copper alloy for marine propeller manufacture [J]. Mar. Technol., 2019, (6): 64
33 朱晶, 姜元军, 何大川. 船用螺旋桨常用铜合金材料比较 [J]. 造船技术, 2019, (6): 64
34 Carlton J S. Marine Propellers and Propulsion [M]. 3rd ed. Britain: Butterworth-Heinemann, 2012: 4
35 Jin C Z, Zhang S, Chen S P. Discussion of anti-corrosion and anti-fouling painting process for propeller [J]. Mar. Technol., 2013, (4): 39
35 金承泽, 张松, 陈松培. 船舶螺旋桨防腐防污涂装工艺的探讨 [J]. 造船技术, 2013, (4): 39
36 Li K, Zhai X F, Guan F, et al. Progress on materials and protection technologies for marine propeller [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 495
36 李科, 翟晓芳, 管芳等. 船用螺旋桨防护技术及其材料研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 495
37 Li X G. Corrosion and Protection of Materials [M]. Changsha: Central South University Press, 2009: 94
37 李晓刚. 材料腐蚀与防护 [M]. 长沙: 中南大学出版社, 2009: 94
38 Wood R J K, Fry S A. The synergistic effect of cavitation erosion and corrosion for copper and cupro-nickel in seawater [J]. J. Fluids Eng., 1989, 111: 271
39 Song Q N, Zheng Y G, Jiang S L, et al. Comparison of corrosion and cavitation erosion behaviors between the as-cast and friction-stir-processed nickel aluminum bronze [J]. Corrosion, 2013, 69: 1111
40 Zhang L M, Ma A L, Yu H, et al. Correlation of microstructure with cavitation erosion behaviour of a nickel-aluminum bronze in simulated seawater [J]. Tribol. Int., 2019, 136: 250
41 Richman R H, McNaughton W P. Correlation of cavitation erosion behavior with mechanical properties of metals [J]. Wear, 1990, 140: 63
42 Będkowski W, Gasiak G, Lachowicz C, et al. Relations between cavitation erosion resistance of materials and their fatigue strength under random loading [J]. Wear, 1999, 230: 201
43 Thiruvengadam A, Waring S. Mechanical properties of metals and their cavitation-damage resistance [J]. J. Ship Res., 1966, 10: 1
44 Tirupataiah Y, Sundararajan G. Evaluation of microhardness correction procedures [J]. Wear, 1986, 110: 183
45 Zhang X F, Fang L. The effect of stacking fault energy on the cavitation erosion resistance of α-phase aluminum bronzes [J]. Wear, 2002, 253: 1105
46 Yu H, Zheng Y G, Yao Z M. Cavitation erosion corrosion behaviour of manganese-nickel-aluminum bronze in comparison with manganese-brass [J]. J. Mater. Sci. Technol., 2009, 25: 758
47 Suh N P, Saka N. The stacking fault energy and delamination wear of single-phase f. c. c. metals [J]. Wear, 1977, 44: 135
48 Li Q, Tang X, Li Y. Progress in research methods for erosion-corrosion [J]. J. Chin. Soc. Corros. Prot, 2014, 34: 399
48 李强, 唐晓, 李焰. 冲刷腐蚀研究方法进展 [J]. 中国腐蚀与防护学报, 2014, 34: 399
49 Zhu J, Zhang Q B, Chen Y, et al. Progress of study on erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 199
49 朱娟, 张乔斌, 陈宇等. 冲刷腐蚀的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 199
50 Du J, Wang H R, Du M, et al. Electrochemical corrosion behavior of 90/10 Cu-Ni alloy in flowing seawater [J]. Corros. Sci. Prot. Technol., 2008, 20: 12
50 杜娟, 王洪仁, 杜敏等. B10铜镍合金流动海水冲刷腐蚀电化学行为 [J]. 腐蚀科学与防护技术, 2008, 20: 12
51 Luo Y N. In field electrochemical detection and erosion-corrosion investigation of metallic materials in marine environment [D]. Tianjin: Tianjin University, 2006
51 雒娅楠. 海洋环境中金属材料现场电化学检测及冲刷腐蚀研究[D]. 天津大学, 2006
52 Cheng F, Jiang S Y. Cavitation erosion resistance of diamond-like carbon coating on stainless steel [J]. Appl. Surf. Sci., 2014, 292: 16
53 Wood R J K. Erosion-corrosion interactions and their effect on marine and offshore materials [J]. Wear, 2006, 261: 1012
54 Shen C, Pan Z X, Ding D H, et al. The influence of post-production heat treatment on the multi-directional properties of nickel-aluminum bronze alloy fabricated using wire-arc additive manufacturing process [J]. Addit. Manuf., 2018, 23: 411
55 Anantapong J, Uthaisangsuk V, Suranuntchai S, et al. Effect of hot working on microstructure evolution of as-cast nickel aluminum bronze alloy [J]. Mater. Des., 2014, 60: 233
56 Ji W. Effect of rare-earth on the as-cast structure and some properties of two kinds of bronzes and some properties of two kinds of bronzes [J]. Foundry, 1995, (5): 14
56 季玮. 稀土对两种青铜的铸态组织和某些性能影响的研究 [J]. 铸造, 1995, (5): 14
57 Wang D, Li Y, Sun B B, et al. Bulk metallic glass formation in the binary Cu-Zr system [J]. Appl. Phys. Lett., 2004, 84: 4029
58 Takaloo A V, Daroonparvar M R, Atabaki M M, et al. Corrosion behavior of heat treated nickel-aluminum bronze alloy in artificial seawater [J]. Mater. Sci. Appl., 2011, 2: 1542
59 Chen R P, Liang Z Q, Zhang W W, et al. Effect of heat treatment on microstructure and properties of hot-extruded nickel-aluminum bronze [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 1254
60 Zeng Y H, Yang F F, Chen Z N, et al. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61: 186
61 Shi X, Song D J, Hu W M. Research on microstructure of deforming nickel-aluminium bronze alloy [J]. Mater. Heat Treat., 2009, 38(10): 42
61 史鑫, 宋德军, 胡伟民. 新型镍铝青铜组织合金研究 [J]. 材料热处理技术, 2009, 38(10): 42
62 Yu H, Zheng Y G, Yao Z M, et al. Cavitation erosion behavior of a cast nickel-aluminum bronze in 2.4%NaCl solution [J]. Corros. Sci. Prot. Technol., 2007, 19: 181
62 于宏, 郑玉贵, 姚治铭等. ZQAl9-4-4-2镍铝青铜在2.4%NaCl溶液中的空蚀行为 [J]. 腐蚀科学与防护技术, 2007, 19: 181
63 Oh-ishi K, Cuevas A M, Swisher D L, et al. The influence of friction stir processing on microstructure and properties of a cast nickel aluminum bronze material [J]. Mater. Sci. Forum, 2003, 426-432: 2885
64 Wang L, Xu X L, Xu J J, et al. Microstructures and properties of PVD aluminum bronze coatings [J]. Thin Solid Films, 2000, 376: 159
65 Tan K S, Wood R J K, Stokes K R. The slurry erosion behaviour of high velocity oxy-fuel (HVOF) sprayed aluminium bronze coatings [J]. Wear, 2003, 255: 195
66 Cottam R, Barry T, McDonald D, et al. Laser processing of nickel-aluminum bronze for improved surface corrosion properties [J]. J. Laser Appl., 2013, 25: 032009
67 Dong Z, Peng X, Guan Y, et al. Optimization of composition and structure of electrodeposited Ni-Cr composites for increasing the oxidation resistance [J]. Corros. Sci., 2012, 62: 147
68 Nandan R, DebRoy T, Bhadeshi H K D H. Recent advances in friction-stir welding-process, weldment structure and properties [J]. Prog. Mater. Sci., 2008, 53: 980
69 Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater. Sci. Eng., 2005, 50R: 1
70 Zhang G F, Wei Z X, Zhang J, et al. Friction Stir Process (FSP)-A new green process for enhancing metal surface intensity [J]. Welded Pipe Tube, 2009, 32(12): 23
70 张贵锋, 韦中兴, 张军等. 搅拌摩擦处理 (FSP)-一种新型绿色表面强化技术 [J]. 焊管, 2009, 32(12): 23
71 Lotfollahi M, Shamanian M, Saatchi A. Effect of friction stir processing on erosion-corrosion behavior of nickel-aluminum bronze [J]. Mater. Des., 2014, 62: 282
72 Ni D R, Xiao B L, Ma Z Y, et al. Corrosion properties of friction-stir processed cast NiAl bronze [J]. Corros. Sci., 2010, 52: 1610
73 Ni D R, Xue P, Wang D, et al. Inhomogeneous microstructure and mechanical properties of friction stir processed NiAl bronze [J]. Mater. Sci. Eng., 2009, 524A: 119
74 Prevey P S, Hornbach D J, Jayaraman N. Controlled plasticity burnishing to improve the performance of friction stir processed Ni-Al bronze [J]. Mater. Sci. Forum, 2006, 539-543: 3807
75 Wu T, Zhu L, Li J, et al. Status and development of thermal spraying technology [J]. Heat Treat. Met. Abroad, 2005, 26(4): 2
75 吴涛, 朱流, 郦剑等. 热喷涂技术现状与发展 [J]. 国外金属热处理, 2005, 26(4): 2
76 Cheng Z X. Investigation on microstructure and properties of dual-scale WC-12Co coating deposited by HVOF [D]. Tianjin: Tianjin University, 2014: 1
76 程振雄. 超音速火焰喷涂制备双尺度结构WC-12Co涂层研究 [D]. 天津: 天津大学, 2014: 1
77 Park K S, Kim S. Corrosion and corrosion fatigue characteristics of cast NAB coated with NAB by HVOF thermal spray [J]. J. Electrochem. Soc., 2011, 158: C335
78 Wang S L, Cheng J C, Yi S H, et al. Corrosion resistance of Fe-based amorphous metallic matrix coating fabricated by HVOF thermal spraying [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 146
79 Movahedi B. Fracture toughness and wear behavior of NiAl-based nanocomposite HVOF coatings [J]. Surf. Coat. Technol., 2013, 235: 212
80 Hawthorne H M, Arsenault B, Immarigeon J P, et al. Comparison of slurry and dry erosion behaviour of some HVOF thermal sprayed coatings [J]. Wear, 1999, 255-229: 825
81 Sun B, Fukanuma H, Ohno N. Study on stainless steel 316L coatings sprayed by a novel high pressure HVOF [J]. Surf. Coat. Technol., 2014, 239: 58
82 Guo X P, Planche M P, Chen J F, et al. Relationships between in-flight particle characteristics and properties of HVOF sprayed WC-CoCr coatings [J]. J. Mater. Process. Technol., 2014, 214: 456
83 Shipway P H, Gupta K. The potential of WC-Co hardmetals and HVOF sprayed coatings to combat water-droplet erosion [J]. Wear, 2011, 271: 1418
84 Li Y. Laser cladding composite coating of aluminum bronze matrix on magnesium alloy surface [D]. Taiyuan: Taiyuan University of Technology, 2011
84 李岩. 镁合金表面激光熔覆铝青铜基复合涂层 [D]. 太原: 太原理工大学, 2011
85 Xiao G H, Cheng F Q, Qin P G. Progress in laser surface strengthening of copper alloys [J]. Mech. Eng., 2013, (12): 35
85 肖国华, 程方启, 秦鹏高. 激光表面强化铜合金技术进展研究 [J]. 机械工程师, 2013, (12): 35
86 Medeliene V, Matulionis E. Morphology and corrosion properties of electroplated Ni-Cr alloy coatings in salt solutions [J]. Prot. Met., 2002, 38: 238
87 Torre F D, van Swygenhoven H, Victoria M. Nanocrystalline electrodeposited Ni: Microstructure and tensile properties [J]. Acta Mater., 2002, 50: 3957
88 Hasan F, Iqbal J, Ridley N. Microstructure of as-cast aluminium bronze containing iron [J]. Mater. Sci. J., 1985, 1: 312
89 Yang F F, Kang H J, Guo E Y, et al. The role of nickel in mechanical performance and corrosion behaviour of nickel-aluminium bronze in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2018, 139: 333
90 Meigh H J. Cast and wrought aluminum bronzes-properties, processes and structure [R]. London: Institute of Materials, 2000
91 Saud S N, Hamzah E, Abubakar T, et al. Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu-Al-Ni shape memory alloys [J]. J. Mater. Eng. Perform., 2014, 23: 3620
92 Anene F A, Nwankwo N E, Nwoke V U. Effect of dopant and heat treatment on the microstructure and mechanical properties of nickel-aluminum bronze [J]. Matell. Mater. Eng., 2019, 25: 147
93 Qin Z B, Luo Q, Zhang Q, et al. Improving corrosion resistance of nickel-aluminum bronzes by surface modification with chromium ion implantation [J]. Surf. Coat. Technol., 2018, 334: 402
94 Guo Z L, Tang W X, Zhang H L, et al. Development of a novel casting Cu alloy for seawater pumper and valves [J]. Spec. Cast. Nonferrous Alloys, 2005, 25: 62
94 郭泽亮, 汤文新, 张化龙等. 海水泵阀用新型铸造铜合金的研制 [J]. 特种铸造及有色合金, 2005, 25: 62
95 Ji L G. Effect of rare earth on properties of high manganese aluminum bronze [J]. Yunnan Metall., 1994, (7): 43
95 季龙官. 稀土对高锰铝青铜性能的影响 [J]. 云南冶金, 1994, (7): 43
96 Ye Y J. Talking propeller cavitation [J]. Dandong Mar., 2005, (1): 88
96 叶英俊. 浅谈螺旋桨的空泡 [J]. 丹东海工, 2005, (1): 88
97 Carl. The causes, impact and restraint methods of propeller cavitation [D]. Tianjin: Tianjin University, 2016
97 Carl. 螺旋桨空泡成因、影响和应对方法 [D]. 天津大学, 2016
[1] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[2] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[3] 安亮, 高昌琦, 贾建刚, 马勤. 金属硅化物抗氧化涂层的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 298-306.
[4] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[5] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[7] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[8] 冯旭,费敬银,李倍,张嫚,郭琪琪. 组分调制Ni/Cr多层膜合金化制备Ni-Cr合金覆盖层的耐腐蚀特性[J]. 中国腐蚀与防护学报, 2019, 39(2): 167-175.
[9] 刘丹阳, 汪洁霞, 李劲风, 陈永来, 张绪虎, 许秀芝, 郑子樵. Mg,Ag,Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[10] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[11] 王越, 刘子利, 刘希琴, 章守东, 田青超. 热轧态Cr、Ni微合金化高强度耐候钢组织与耐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(1): 39-46.
[12] 骆立立, 费敬银, 王磊, 林西华, 王少兰. 组分调制Cu/Ni多层膜的合金化及其合金化镀层的耐蚀特性[J]. 中国腐蚀与防护学报, 2014, 34(6): 523-531.
[13] 杜斌, 周世生, 李敏, 马丽萍. 铝颜料表面改性防腐技术的研究与发展[J]. 中国腐蚀与防护学报, 2014, 34(5): 410-418.
[14] 张金龙, 屠礼明, 谢兴飞, 姚美意, 周邦新. Zr-1Nb-xGe合金在400 ℃过热蒸汽中耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 171-177.
[15] 侯文婷,康志新. Mg-Li合金表面浅绿色超疏水复合膜层的制备及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2012, 32(4): 306-310.