Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 811-818    DOI: 10.11902/1005.4537.2020.172
  研究报告 本期目录 | 过刊浏览 |
不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理
孙宝壮1, 周霄骋1, 李晓荣2, 孙玮潞3, 刘子瑞1, 王玉花4, 胡洋4, 刘智勇1()
1.北京科技大学 国家材料腐蚀与防护科学数据中心 新材料技术研究院 北京 100083
2.天津大港油田集团工程建设有限责任公司 天津 300280
3.天津科技大学经济与管理学院 天津 300222
4.中国石油化工股份有限公司齐鲁分公司 淄博 255434
Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment
SUN Baozhuang1, ZHOU Xiaocheng1, LI Xiaorong2, SUN Weilu3, LIU Zirui1, WANG Yuhua4, HU Yang4, LIU Zhiyong1()
1.National Materials Corrosion and Protection Science Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Tianjin Dagang Oilfield Group Engineering Construction Co. Ltd. , Tianjin 300280, China
3.College of Economics and Management, Tianjin University of Science & Technology, Tianjin 300222, China
4.SINOPEC Qilu Petrochemical Company, Zibo 255434, China
全文: PDF(17087 KB)   HTML
摘要: 

采用动电位极化曲线、电化学阻抗谱以及U形弯试样浸泡实验研究了不同组织 (原始组织、固溶组织与敏化组织) 的316L不锈钢在NH4Cl环境下的应力腐蚀开裂 (SCC) 行为与机理,分析了NH4Cl浓度对不同热处理状态的316L不锈钢应力腐蚀行为和机理的影响。结果表明:不同组织的316L不锈钢在NH4Cl环境中均具有明显的SCC敏感性,原始组织、固溶组织、敏化组织的SCC敏感性依次升高;随着NH4Cl溶液浓度升高,316L不锈钢不同组织的钝化膜稳定性降低,原始组织、固溶组织及敏化组织在NH4Cl环境下,破钝电位依次降低,维钝电流密度依次升高,阻抗值依次减小,钝化膜更加活泼易破坏,饱和NH4Cl浓度下极易发生点蚀导致SCC的萌生。316L不锈钢在NH4Cl环境中的SCC裂纹扩展机制主要为穿晶型阳极溶解机制。

关键词 316L不锈钢NH4Cl环境热处理应力腐蚀开裂    
Abstract

The stress corrosion cracking (SCC) behavior in NH4Cl solutions was studied by means of potentiodynamic polarization measurement, electrochemical impedance spectra (EIS) measurement for 316L stainless steel with microstructures corresponding with different status of the steel, including as-received, solid solution- and sensitization-treatment. The results show that 316L stainless steels exert high SCC susceptibility in NH4Cl containing environment, which increases in the order of as-received, solid solution- and sensitization-treatment. With the rising NH4Cl concentration, the stability of passive film degrades, the passive current density increases, the breakdown potential and polarization resistance decline. In particular, in the saturated NH4Cl solution, pits are prone to initiate, which leads to the occurrence of SCC. In NH4Cl solution, SCC of 316L stainless steel is dominated by anodic dissolution (AD) process, and the SCC cracks propagate transgranularly.

Key words316L stainless steel    ammonium chloride environment    heat treatment    stress corrosion cracking
收稿日期: 2020-09-23     
ZTFLH:  TG172  
基金资助:国家重点研发计划(2017YFF0210404)
通讯作者: 刘智勇     E-mail: liuzhiyong7804@126.com
Corresponding author: LIU Zhiyong     E-mail: liuzhiyong7804@126.com
作者简介: 孙宝壮,男,1994年生,博士生

引用本文:

孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
Baozhuang SUN, Xiaocheng ZHOU, Xiaorong LI, Weilu SUN, Zirui LIU, Yuhua WANG, Yang HU, Zhiyong LIU. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 811-818.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.172      或      https://www.jcscp.org/CN/Y2021/V41/I6/811

图1  不同热处理组织316L不锈钢的微观形貌
图2  不同组织316L不锈钢在不同浓度NH4Cl溶液中的动电位极化曲线
图3  不同组织316L不锈钢在不同浓度NH4Cl溶液中破钝电位Eb和腐蚀电流Icorr拟合结果
图4  不同组织316L不锈钢在不同浓度NH4Cl溶液中的电化学阻抗谱
图5  电化学阻抗谱等效电路示意图
图6  316L不锈钢U形弯试样在不同浓度沸腾NH4Cl溶液中浸泡30 d微观形貌
图7  不同组织316L不锈钢在饱和NH4Cl沸腾溶液中裂纹扩展SEM像
图8  不同组织316L不锈钢在饱和NH4Cl沸腾溶液中裂纹沿厚度扩展SEM像
1 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
2 Xing X J, Yang M H, Jiang Y J, et al. Summary of high-chlorine crude oil processing [J]. Pet. Ref. Eng., 2015, 45(1): 7
2 邢献杰, 杨明辉, 江煜杰等. 高氯原油加工情况总结 [J]. 炼油技术与工程, 2015, 45(1): 7
3 Zhou M. Current status of corrosion and control in Chinese petroleum refining and chemical enterprises [J]. Corros. Prot., 2012, 33 (suppl.2): 62
3 周敏. 中国石油炼化企业腐蚀与控制现状 [J]. 腐蚀与防护, 2012, 33(): 62
4 Liu Z Y, Dong C F, Li X G, et al. Stress corrosion cracking behaviour of two stainless steels in hydrogen sulfide environment [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 318
4 刘智勇, 董超芳, 李晓刚等. 硫化氢环境下两种不锈钢的应力腐蚀开裂行为 [J]. 北京科技大学学报, 2009, 31: 318
5 Sun J L, Zhou D, Jin J, et al. Localized corrosion resistance of three commonly-used stainless steels [J]. Chin. J. Mater. Res., 2017, 31: 665
5 孙京丽, 邹丹, 金晶等. 三种常用不锈钢的耐局部腐蚀性能 [J]. 材料研究学报, 2017, 31: 665
6 Sun L, Hou Y H, Yang X, et al. Effect of chlorine ion and sulfur ion on corrosion of 316L stainless steel and monel alloy in oil refining process [J]. Surf. Technol., 2015, 44(12): 41
6 孙亮, 侯艳宏, 杨席等. 炼油加工过程中氯离子与硫离子对316L不锈钢和Monel合金腐蚀的影响 [J]. 表面技术, 2015, 44(12): 41
7 Toba K, Suzuki T, Kawano K, et al. Effect of relative humidity on ammonium chloride corrosion in refineries [J]. Corrosion, 2011, 67: 055005
8 Toba K, Ueyama M, Kawano K, et al. Corrosion of carbon steel and alloys in concentrated ammonium chloride solutions [J]. Corrosion, 2012, 68: 1049
9 Zheng Z J, Ou G F, Ye H J, et al. Analysis on the under deposit corrosion of air cooler tubes: Thermodynamic, numerical and experimental study [J]. Eng. Failure Anal., 2017, 79: 726
10 Zhao M, Gong S P, Kang Q L, et al. Detection and control of chlorides in crude oil processing [J]. Corros. Prot. Petrochem. Ind., 2014, 31(3): 16
10 赵敏, 龚树鹏, 康强利等. 原油加工中氯化物的检测及控制 [J]. 石油化工腐蚀与防护, 2014, 31(3): 16
11 Cheng C Q, Klinkenberg L I, Ise Y, et al. Pitting corrosion of sensitised type 304 stainless steel under wet-dry cycling condition [J]. Corros. Sci., 2017, 118: 217
12 Yang X N, Qi H M, Gao J S, et al. Case analysis on corrosion by hydrogenation effluent [J]. Ref. Chem. Ind., 2011, 22(5): 42
12 杨秀娜, 齐慧敏, 高景山等. 加氢反应流出物腐蚀案例分析 [J]. 炼油与化工, 2011, 22(5): 42
13 Qiao G P, Chen W. Ammonium salt corrosion analysis and risk-bask management of hydro-processing reactor effluent system [J]. Corros. Prot., 2012, 33: 618
13 乔光谱, 陈炜. 加氢装置反应系统的氨盐腐蚀分析及风险管理 [J]. 腐蚀与防护, 2012, 33: 618
14 Tsutsumi Y, Nishikata A, Tsuru T. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions [J]. Corros. Sci., 2007, 49: 1394
15 Liu X Y. Ammonium salt corrosion in reactor effluent system of hydrogenation unit and prevention [J]. Corros. Prot. Petrochem. Ind., 2014, 31(2): 17
15 刘新阳. 加氢反应流出物中铵盐腐蚀及预防 [J]. 石油化工腐蚀与防护, 2014, 31(2): 17
16 Shargay C A, Turner J, Messer B, et al. Design considerations to minimize ammonium chloride corrosion in hydrotreater REAC's [A]. Proceedings of the Corrosion 2001 [C]. Houston, Texas, 2001
17 Sun A D, Fan D Y. Prediction, monitoring, and control of ammonium chloride corrosion in refining processes [A]. Proceedings of the Corrosion 2010 [C]. San Antonio, Texas, 2010
18 Ma H C, Wu W, Zhou X C, et al. Comparative study on stress corrosion cracking behaviors of 304 and 321 austenitic stainless steels by different heat treatment in NH4Cl solution [J]. Surf. Technol., 2018, 47(11): 126
18 马宏驰, 吴伟, 周霄骋等. 不同热处理态的304和321奥氏体不锈钢在氯化铵环境中的应力腐蚀行为对比研究 [J]. 表面技术, 2018, 47(11): 126
19 Freire L, Carmezim M J, Ferreira M G S, et al. The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study [J]. Electrochim. Acta, 2010, 55: 6174
20 Andrade C, Keddam M, Nóvoa X R, et al. Electrochemical behaviour of steel rebars in concrete: Influence of environmental factors and cement chemistry [J]. Electrochim. Acta, 2001, 46: 3905
21 Dı́az B, Joiret S, Keddam M, et al. Passivity of iron in red mud’s water solutions [J]. Electrochim. Acta, 2004, 49: 3039
22 Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
23 Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta, 2012, 64: 211
24 Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
25 Liu Z Y, Wang X Z, Liu R K, et al. Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H2S/CO2 annular environment [J]. J. Mater. Eng. Perform., 2014, 23: 1279
26 Truman J E. The influence of chloride content, pH and temperature of test solution on the occurrence of stress corrosion cracking with austenitic stainless steel [J]. Corros. Sci., 1977, 17: 737
27 Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J]. Mater. Sci. Eng., 2010, 527A: 2738
[1] 余德远, 刘智勇, 杜翠薇, 黄辉, 林楠. 管线钢土壤应力腐蚀开裂研究进展及展望[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[2] 张龙华, 李长君, 潘磊, 韩思柯, 王昕, 崔中雨. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[3] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[4] 伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[5] 焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 417-428.
[6] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[9] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[10] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[11] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[12] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[13] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[14] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[15] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.