Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (5): 398-406    DOI: 10.11902/1005.4537.2015.216
  本期目录 | 过刊浏览 |
Q235钢在甘肃北山地区地下水模拟液及高压实膨润土环境下的腐蚀行为
郑珉1,2,黄彦良1(),西方笃3,路东柱1,张杰1,王秀通1,温娟4,李玉红4,刘月妙5
1. 中国科学院海洋研究所 青岛 266071
2. 中国科学院大学 北京 100049
3. 东京工业大学 东京 1528552
4. 兰州大学核科学与技术学院 兰州 730000
5. 核工业北京地质研究院 北京 100029
Corrosion Behavior of Q235 Steel in Simulated Underground Water and Highly Compacted Bentonite Environment of Beishan Area
Min ZHENG1,2,Yanliang HUANG1(),Du XIFANG3,Dongzhu LU1,Jie ZHANG1,Xiutong WANG1,Juan WEN4,Yuhong LI4,Yuemiao LIU5
1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Tokyo Institute of Technology, Tokyo 1528552, Japan
4. The School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
5. Beijing Research Institute of Uranium Geology, Beijing 100029, China
全文: PDF(1766 KB)   HTML
摘要: 

采用开路电位、电化学阻抗技术以及动电位极化曲线测试的方法,研究了Q235钢在北山地区地下水模拟溶液以及模拟的核废料深地质处置环境中的电化学腐蚀行为。结果表明,Q235钢在地下水环境中的腐蚀速率高于高压实膨润土环境中的腐蚀速率,且其腐蚀速率最大值出现在70~90 ℃区间。在模拟的核废料深地质处置环境下,Q235钢在含水率为20%的高压实膨润土中的腐蚀速率显著高于其他含水率条件,该含水率是高压实膨润土饱和与非饱和两种水分状况的交界。其中高含水率的高压实膨润土环境,阴极氧气的扩散是腐蚀的主要限制因素;而对于低含水率的高压实膨润土环境,电导率是决定腐蚀速率的主要因素。

关键词 Q235钢地下水模拟液核废料深地质处置环境腐蚀    
Abstract

The corrosion behavior of Q235 steel in an artificial solution to simulate the underground water and a highly compacted bentonite with different water contents to simulate the deep geological disposal environment at Beishan area, as a candidate site for nuclear waste storage, was respectively investigated by open circuit current measurement, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The results indicated that the simulated underground water is more aggressive than the highly compacted bentonite with different water contents, which presents a high corrosion rate of Q235 steel with the maximum at the temperature between 70 and 90 ℃. While, the corrosion rate of Q235 in highly compacted bentonite with 20% water content shows the highest corrosion rate among others, whilst the 20% water content can be conformed as the border of saturated and unsaturated water status for the highly compacted bentonite. Moreover, the study showed that the oxygen diffusion is the limitation for cathodic reaction, so that the further corrosion in the highly compacted benonite with high water contents, while conductivity is the limitation in those with low water contents.

Key wordsQ235 steel    simulated underground water solution    deep geological disposal environment    corrosion
    
基金资助:国家自然科学基金项目 (51471160) 资助

引用本文:

郑珉,黄彦良,西方笃,路东柱,张杰,王秀通,温娟,李玉红,刘月妙. Q235钢在甘肃北山地区地下水模拟液及高压实膨润土环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(5): 398-406.
Min ZHENG, Yanliang HUANG, Du XIFANG, Dongzhu LU, Jie ZHANG, Xiutong WANG, Juan WEN, Yuhong LI, Yuemiao LIU. Corrosion Behavior of Q235 Steel in Simulated Underground Water and Highly Compacted Bentonite Environment of Beishan Area. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 398-406.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.216      或      https://www.jcscp.org/CN/Y2016/V36/I5/398

图1  高压实膨润土制备及电化学测试装置示意图
图2  Q235钢试样在不同温度地下水模拟液中的开路电位
图3  Q235钢试样在不同含水率的高压实膨润土中开路电位随温度的变化
图4  Q235钢试样梯度升温过程中在不同含水率的高压实膨润土中平均开路电位随温度的变化
图5  Q235钢试样在模拟地下水溶液中不同温度下的EIS
图6  Q235钢在模拟地下水溶液中不同温度下的等效电路
Temperature / ℃ Rs / Ωcm2 Qb-Y0 / Fcm-2 Qb-n Rb / Ωcm2 Qdl-Y0 / Fcm-2 Qdl-n Rct / Ωcm2 W-Y0 / Ω-1cm-2
5 17.11 1.502×10-7 0.982 10.94 2.687×10-4 0.7798 4130 0.00869
25 11.35 1.433×10-7 0.9884 8.363 3.341×10-4 0.7758 1415 0.02011
45 12.76 --- --- --- 2.816×10-4 0.7971 603.4 0.01038
60 12.77 8.747×10-7 0.8308 36.37 3.939×10-4 0.7698 436.8 0.02731
80 8.311 1.038×10-6 0.7885 31.94 5.381×10-4 0.7677 622.6 0.01771
98 9.912 6.352×10-7 0.8383 26.06 5.954×10-4 0.725 1805 0.01217
表1  Q235钢在模拟地下水溶液中不同温度下的EIS拟合电化学参数
图7  Q235钢在不同含水率的高压实膨润土中不同温度下的EIS谱
图8  Q235钢在地下水模拟溶液中不同温度下的动电位极化曲线
图9  Q235钢试样在不同含水率的高压实膨润土中不同温度下的动电位极化曲线
图10  Q235钢在地下水模拟溶液及不同含水率高压实膨润土中腐蚀电流密度随温度的变化曲线
[1] Chapman N, Mckinley I.Natural Analogues in Radioactive Waste Disposal[M]. Michigan: Graham & Trotman for the Commission of the European Communities, 1986
[2] Wang J, Chen W M, Su R, et al.Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chin. J. Rock Mech. Eng., 2006, 25(4): 801
[2] (王驹, 陈伟明, 苏锐等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4): 801)
[3] Wang J, Fan X H, Xu G Q, et al.Geological Disposal of High Level Radioactive Waste in China: Progress in Last Decade [M]. Beijing: Atomic Energy Press, 2004
[3] (王驹, 范显华, 徐国庆等. 中国高放废物地质处置十年进展 [M].北京: 原子能出版社, 2004)
[4] IAEA. The principles of radioactive waste management, safety series No.115 [R]. Vienna: IAEA, 1995
[5] IAEA. Radioactive waste management status and trends: No.1 [R]. Vienna: IAEA/WMDB/ST/1, 2001
[6] SKB. Sea disposal of radioactive wastes (Technical Report TR-01-30) [R]. Vienna: IAEA, 2001
[7] Duquette D J, Latanision R M, Di Bella C A W, et al. Corrosion issues related to disposal of high-level nuclear waste in the Yucca Mountain repository peer reviewer's perspective[J]. Corrosion, 2009, 65(4): 272
[8] Wang J, Xu G Q, Zheng H L, et al.Geological disposal of high level radioactive waste in China: Progress during 1985-2004[J]. WorldNucl. Geosci., 2005, 22(1): 5
[8] (王驹, 徐国庆, 郑华铃等. 中国高放废物地质处置研究进展: 1985~2004[J]. 世界核地质科学, 2005, 22(1): 5)
[9] Ahn T M, Soo P.Corrosion of low-carbon cast steel in concentrated synthetic groundwater at 80 to 150 ℃[J]. Waste Manage., 1995, 15(7): 471
[10] Rosborg B, Werme L.The Swedish nuclear waste program and the long-term corrosion behaviour of copper[J]. J. Nucl. Mater., 2008,397: 142
[11] Wei X, Dong J H, Ke W.Crevice corrosion of Grade-2 Ti in simulated groundwater for geological disposal of high-level radioactive nuclear waste[J]. Acta Metall. Sin., 2013, 49(6): 675
[11] (魏欣, 董俊华, 柯伟. 工业纯Ti在模拟高放废物地质处置环境中的缝隙腐蚀行为[J]. 金属学报, 2013, 49(6): 675)
[12] King F, Padovani C.Review of the corrosion performance of selected canister materials for disposal of UK HLW and/or spent fuel[J]. Corros. Eng. Sci. Technol., 2011, 46(2): 82
[13] Taniguchi N, Honda A, Ishikawa H.Experimental investigation of passivation behavior and corrosion rate of carbon steel in compacted bentonite[J]. Mater. Res. Soc., 1998, (506): 495
[14] Akira I, Mikazu Y, Yutaka S, et al.A research program for numerical experiments on the coupled thermo-hydro-mechanical and chemical processes in the near-field of a high-level radioactive waste repository [A]. Geoproc 2003 conference[C]. Stocktoml, Royal Institute of Technology (KTH), 2003: 346
[15] Winsley R J, Smart N R, Rance A P.Further studies on the effect of irradiation on the corrosion of carbon steel in alkaline media[J]. Corros. Eng. Sci. Technol., 2011, 46(2): 111
[16] Lee C T, Qin Z, Odziemkowski M, et al.The influence of groundwater anions on the impedance behaviour of carbon steel corroding under anoxic conditions[J]. Electrochem. Acta, 2006, 51: 1558
[17] Liu C, Pang X L, Liu Q L, et al.Corrosion behavior of carbon steel welded joints in simulated ground water solution [A]. The 7th national corrosion conference[C]. Changyuan: Chinese Society of Corrosion and Protection (CSCP), 2013: 324
[17] (刘超, 庞晓露, 刘泉林等. 碳钢焊接接头在模拟北山地下水溶液中的腐蚀行为 [A]. 第七届全国腐蚀大会论文摘要集[C]. 长垣: 中国腐蚀与防护学会, 2013: 324)
[18] Zheng M, Huang Y L, Lu D Z, et al.Determination of representative groundwater components for corrosion study in Beishan preselected area of high-level radioactive waste disposal repository[J]. J. Chin. Soc. Corros. Prot., 2016, 36(2): 185
[18] (郑珉, 黄彦良, 路东柱等. 中国高放废物处置库甘肃北山预选区腐蚀研究用代表性地下水成分的确定[J]. 中国腐蚀与防护学报, 2016, 36(2): 185)
[19] Ye W M, Qian L X, Chen B, et al.Laboratory test on unsaturated hydraulic conductivity of densely compacted Gaomiaozi bentonite under confined conditions[J]. Chin. J. Roc. Mech. Eng., 2009, 28(1): 105
[19] (叶为民, 钱丽鑫, 陈宝等. 侧限状态下高压实高庙子膨润土非饱和渗透性的试验研究[J]. 岩石力学工程学报, 2009, 28(1): 105)
[20] Liu Y M, Wang J, Cao S F, et al.A large-scale THMC experiment of buffer material for geological disposal of high level radioactive waste in China[J]. Rock Soil Mech., 2013, 34(10): 2756
[20] (刘月妙, 王驹, 曹胜飞等. 中国高放废物地质处置缓冲材料大型试验台架和热-水-力-化学耦合性能研究[J]. 岩土力学, 2013, 34(10): 2756)
[21] Zhang Y J.Numerical analysis for coupled thermo-hydro-mechanical processes in engineered barrier of conceptual nuclear waste repository[J]. Eng. Mech., 2007, 24(5): 186
[21] (张玉军. 核废料处置概念库工程屏障中热-水-应力耦合过程数值分析[J]. 工程力学, 2007, 24(5): 186)
[22] Rhoades J D, Raats P A C, Prather R J. Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulksoil electrical conductivity[J]. Soil Sci. Soc. Am. Proc., 1976, 40: 651
[23] Seladji S, Cosenza P, Tabbgh A, et al.The effect of compaction on soil electrical resistivity: A laboratory investigation[J]. Eur. J. Soil Sci., 2010, 61: 1043
[24] Li M C, Lin H C, Cao C N.Influence of moisture content on soil corrosion behavior of carbon steel[J]. Corros. Sci. Prot. Technol., 2000, 12(4): 218
[24] (李谋成, 林海潮, 曹楚南. 湿度对钢铁材料在中性土壤中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2000, 12(4): 218)
[25] Gardiner C P, Melchers R E.Corrosion of mild steel in porous media[J]. Corros. Sci., 2002, 44(11): 2459
[26] Gupta S K, Gupta B K.The critical soil moisture content in the underground corrosion of mild steel[J]. Corros. Sci., 1979, 19(3): 171
[27] Murray J N, Moran P J.Influence of moisture on corrosion of pipeline steel in soils using in situ impedance spectroscopy[J]. Corrosion, 1989, 45(1): 34
[28] Cheng Y F, Steward F R.Corrosion of carbon steels in high temperature water studied by electrochemical techniques[J]. Corros. Sci., 2004, 46(10): 2405
[29] Chen C F, Lu M X, Zhao G X, et al.Effects of temperature, Cl- concentration and Cr on electrode reactions of CO2 corrosion of N80 steel[J]. Acta Metall. Sin., 2003, 39(8): 848
[29] (陈长风, 路民旭, 赵国仙等. 温度, C1-浓度, Cr元素对N80钢CO2腐蚀电极过程的影响[J]. 金属学报, 2003, 39(8): 848)
[30] Zhang B H, Cong W B, Yang P.Electrochemical Corrosion and Protection of Metal [M]. Beijing: Chemistry Industry Press, 2005
[30] (张宝宏, 丛文博, 杨萍. 金属电化学腐蚀与防护 [M]. 北京: 化学工业出版社, 2005)
[31] Wu J.Effects of soil properties on electrode potential of steel in soils[J]. Acta Pedol. Sin., 1991, 28(2): 118
[31] (吴汮. 土壤性质对钢铁电极电位的影响[J]. 土壤学报, 1991, 28(2): 118)
[32] Wu Y H, Cai Z C, He X Y.Corrosion behavior of Q235 steel in saline soils with different humidity[J]. J. Shangqiu Teach. Coll., 2005, 21(2): 98
[32] (伍远辉, 蔡铎昌, 何晓英. Q235钢在不同湿度的青海盐湖盐渍土壤中的腐蚀行为[J]. 商丘师范学院学报, 2005, 21(2): 98)
[33] Nie X H, Du C W, Li X G.Influence of temperature on the corrosion behavior and mechanism of Q235 steel in Dagang soil[J]. J. Univ. Sci. Technol. Beijing, 2009, 31(1): 48
[33] (聂向晖, 杜翠薇, 李晓刚. 温度对Q235钢在大港土中腐蚀行为和机理的影响[J]. 北京科技大学学报, 2009, 31(1): 48)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.