Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (3): 225-230    DOI: 10.11902/1005.4537.2015.120
  研究报告 本期目录 | 过刊浏览 |
X70钢输送气态和超临界状态CO2时的腐蚀行为研究
蒋秀(),宋晓良,屈定荣,刘小辉
中国石油化工股份有限公司青岛安全工程研究院 青岛 266071
Corrosion Behavior of X70 Mild Steel during Transportation of Gaseous- and Supercritical-CO2 Fluids
Xiu JIANG(),Xiaoliang SONG,Dingrong QU,Xiaohui LIU
SINOPEC Research Institute of Safety Engineering, Qingdao 266071, China
全文: PDF(1166 KB)   HTML
摘要: 

采用失重法和SEM等方法研究了在管道内存在析出水的情况下,输送气态和超临界状态CO2时X70钢的腐蚀行为。结果表明:在35 ℃,CO2的压力为4~12 MPa条件下,X70钢的均匀腐蚀速率随压力的增加而逐渐降低;当CO2压力为4MPa时,金属表面出现了明显的FeCO3沉积,发生了严重均匀腐蚀;在其它压力条件下,金属表面腐蚀产物膜很薄并不连续,发生了小孔腐蚀;从腐蚀角度,存在水的情况下采用气态或超临界状态输送CO2均存在较严重的腐蚀风险。

关键词 气态超临界状态CO2腐蚀X70钢    
Abstract

The corrosion behavior of X70 mild steel was investigated in the case of water deposited in CO2 pipeline by means of weight loss method and scanning electron microscopy (SEM). Results showed that general corrosion rate of X70 steel decreased with the increase of CO2 pressure from 4 to 12 MPa at 35 ℃. FeCO3 film and severe general corrosion was observed at 4 MPa, while thin and discontinuous corrosion product and serious pitting corrosion attack were found under other CO2 pressure conditions. It is of great corrosion risk to transport CO2 in gaseous or supercritical status for X70 mild steel if free water is formed in the pipeline.

Key wordsgaseous    supercritical    CO2    corrosion    X70 steel
收稿日期: 2015-07-21     

引用本文:

蒋秀,宋晓良,屈定荣,刘小辉. X70钢输送气态和超临界状态CO2时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(3): 225-230.
Xiu JIANG, Xiaoliang SONG, Dingrong QU, Xiaohui LIU. Corrosion Behavior of X70 Mild Steel during Transportation of Gaseous- and Supercritical-CO2 Fluids. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 225-230.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.120      或      https://www.jcscp.org/CN/Y2016/V36/I3/225

图1  35 ℃不同CO2压力时X70钢的腐蚀产物膜及清洗腐蚀产物后金属表面形貌
图2  35 ℃时超临界状态下X70钢的均匀腐蚀速率随CO2压力的变化
图3  35 ℃时超临界状态下X70钢的腐蚀产物膜形貌
图4  35 ℃,CO2压力为8和9 MPa条件下X70钢的腐蚀产物膜形貌及EDX分析结果
图5  35 ℃,CO2压力为8~12 MPa时X70钢清除表面腐蚀产物膜后的形貌
图6  35 ℃,CO2压力为4~12 MPa时X70钢的均匀腐蚀速率
图7  35 ℃时溶液pH值随CO2压力的变化
[1] Lone S, Cockerill T, Macchietto S.The techno-economics of a phased approach to developing a UK carbon dioxide pipeline network[J]. J. Pipeline. Eng., 2010, 11(3): 223
[2] Sandana D, Hadden M, Race J, et al.Transport of gaseous and dense carbon dioxide in pipelines: Is there an internal corrosion risk[J]. J. Pipeline. Eng., 2012, 11(3): 229
[3] Waard C D, Milliams D E.Carbonic acid corrosion of steel[J]. Corrosion, 1975, 31(5): 177
[4] Nesic S.Key issues related to modeling of internal corrosion of oil and gas pipelines-A review[J]. Corros. Sci., 2007, 49: 4308
[5] Gao K W, Yu F, Pang X L, et al.Mechanical properties of CO2 corrosion product scales and their relationship to corrosion rates[J]. Corros. Sci., 2008, 50(10): 2796
[6] Zuo T, Liu X H, Jiang X, et al.Development of research in corrosion on supercritical CO2 transportation pipelines[J]. Petrochem. Corros. Prot., 2011, 28(6): 1
[6] (左甜, 刘小辉, 蒋秀等. 超临界CO2输送管道的腐蚀研究进展[J]. 石油化工腐蚀与防护, 2011, 28(6): 1)
[7] Jiang X, Qu D R, Liu X H.Supercritical CO2 pipeline transportation and safety[J]. Oil Gas Storage Transp., 2013, 32(8): 809
[7] (蒋秀, 屈定荣, 刘小辉. 超临界CO2管道输送与安全[J]. 油气储运, 2013, 32(8): 809)
[8] Evans W C, Kling G W, Tuttle M L, et al.Gas buildup in lake Nyos, camernoon: The recharge process and its consequences [J]. Appl. Geochem., 1993, 8: 207
[9] Seiersten M.Materials selection for separation, transportation and disposal of CO2 [A]. Corrosion/01[C]. Houston: NACE, 2001
[10] Jiang X, Song X L, Zhang Y L, et al.Impact of CO2 transportation technology on the corrosion of X65 pipeline steel [A]. Proceedings of CIPC 2013 China International Oil & Gas Pipeline Conference[C]. Langfang, 2013: 41
[10] (蒋秀, 宋晓良, 张艳玲等. CO2输送工艺对X65管道腐蚀的影响[A]. Proceedings of CIPC 2013 China International Oil & Gas Pipeline Conference[C]. 廊坊: 2013: 41)
[11] Jiang X, Qu D R, Song X L, et al.Impact of water content on corrosion behavior of CO2 transportation pipeline [A]. Corrosion/15[C]. Houston: NACE, 2015
[12] Xiang Y, Wang Z, Yang X, et al.The upper limit of moisture content for supercritical CO2 pipeline transport[J]. J. Supercrit. Fluid., 2012, 67: 14
[13] Spycher N, Pruess K, Ennis-King J.CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 ℃ and up to 600 bar[J]. Geochim. Cosmochim. Acta, 2003, 67(16): 3015
[14] Choi Y S, Nesic S.Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments[J]. Int. J. Greenh. Gas Con., 2011, 5: 788
[15] Hua Y, Barker R, Neville A.Comparison of corrosion behavior for X-65 carbon steel in supercritical CO2-saturated water and water-saturated/unsaturated supercritical CO2[J]. J. Supercrit. Fluid., 2015, 97: 224
[16] Choi Y S, Nesic S, Young D.Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments[J]. Environ. Sci. Technol., 2010, 44(23): 9233
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.