Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (3): 193-198    
  本期目录 | 过刊浏览 |
304不锈钢在热带海洋大气下暴露实验
和加速腐蚀实验研究
骆 鸿 李晓刚 董超芳 肖 葵
北京科技大学腐蚀与防护中心 腐蚀与防护教育部重点实验室 北京 100083
Research on Atmosphere Exposure in Tropical Marine and Accelerated Corrosion Test of
304 Stainless Steel
LUO Hong, LI Xiaogang, DONG Chaofang, XIAO Kui
Key Laboratory of Corrosion and Protection of Ministry of Education, Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3897 KB)  
摘要: 根据304不锈钢材料在西沙地区典型的热带海洋大气腐蚀的特点,在当量计算的基础上,发展了一种模拟西沙室外大气环境的室内加速腐蚀方法,并从腐蚀动力学特征、腐蚀机理、腐蚀产物等几个方面探讨了304不锈钢材料在我国典型热带海洋地区大气暴露实验结果和室内加速腐蚀实验结果的相关性。研究结果表明,紫外/周期浸润复合加速腐蚀实验在一定程度上能较好地模拟304不锈钢材料在西沙海洋大气环境中的腐蚀行为,通过加速腐蚀实验可以对304不锈钢材料在该地区的大气腐蚀行为进行一定程度的预测。
关键词 不锈钢大气暴露加速腐蚀相关性    
Abstract:According to the typically tropical marine atmospheric corrosion features in Xisha area, a laboratory-accelerated corrosion method was developed on the base of the equivalent calculation. The correlation between atmosphere exposure in the tropical marine and the accelerated corrosion was studied from the dynamic characteristics, mechanism of corrosion, corrosion products. The results showed that, to some extent, the uv/cycle wet-dry synergistic accelerated corrosion test can simulate the corrosion behavior of 304 stainless steel in the tropical marine atmosphere, which can be predicted by the synergistic accelerated corrosion test.
Key wordsKeywords: stainless steel    atmospheric exposure test    accelerated test    correlation
    
ZTFLH:  TG174.2  

引用本文:

骆 鸿 李晓刚 董超芳 肖 葵. 304不锈钢在热带海洋大气下暴露实验
和加速腐蚀实验研究[J]. 中国腐蚀与防护学报, 2013, 33(3): 193-198.
. Research on Atmosphere Exposure in Tropical Marine and Accelerated Corrosion Test of
304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2013, 33(3): 193-198.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I3/193

[1] Button H E, Simm D W. The influence of particulate matter on the corrosion behaviour of type 316 stainless steel [J]. Anti-Corros. Methods Mater., 1985, 32(6): 8-10
[2] Johnson K E. Role of inclusion in the atmospheric pitting of stainless steels [J]. Brit. Corros. J., 1980, 15(3): 123-127
[3] Johnson K E. Airborne contaminants and the pitting of stainless steels in the atmosphere [J]. Corros. Sci., 1982, 22(3): 175-191
[4] Chen H C, Yu G C, Wang Z Y. Research into the correlation between outdoor exposure and indoor acceleration experiment of common materials [J]. Corros. Sci. Prot. Technol., 1991, 3(3): 34-37
(陈鸿川, 于国才, 王振尧. 常用材料大气暴露与室内加速试验相关性研究 [J]. 腐蚀科学与防护技术, 1991, 3(3): 34-37)
[5] Cai J P, Liu M, Luo Z H, et al. Study on accelerated tests for aluminum alloy atmospheric corrosion [J]. J. Chin. Soc. Corros. Prot., 2005, 25(5): 262-265
(蔡健平, 刘明, 罗振华等. 航空铝合金大气腐蚀加速试验研究 [J]. 中国腐蚀与防护学报, 2005, 25(5): 262-265)
[6] ASTM G46. Standard Guide for Examination and Evaluation of Pitting Corrosion [S]. Philadelphia: ASTM, 1994
[7] Mu Z T, Liu W L, Yu Z Q. Research on accelerated corrosion equivalent conversion method of aircraft service environment [J]. J. Nav. Aeronaut. Eng. Inst., 2007, 22(3): 301-304
(穆志韬, 柳文林, 于战樵. 飞机服役环境当量加速腐蚀折算方法研究 [J]. 海军航空工程学院学报, 2007, 22(3): 301-304)
[8] Liu Y H, Ren S Y. Study on equivalent accelerated corrosion test environment spectrum of typical marine atmosphere [J]. Equip. Environ. Eng., 2011, 8(1): 48-51
(刘元海, 任三元. 典型海洋大气环境当量加速试验环境谱研究 [J]. 装备环境工程, 2011, 8(1): 48-51)
[9] Asami K, Hashimoto K. Importance of initial surface film in the degradation of stainless steels by atmospheric exposure [J]. Corros. Sci., 2003, 45(10): 2263-2283
[10] Lajain H I. Entwicklung einer mathematischen Beziehung für die Passivierung eines austenitischen Schwei?guts an Luft und unter einem Elektrolyten [J]. Mater. Corros., 1970, 21(1): 28-32
[11] Azzerri N. Ageing of passive surfaces of stainless steels in an urban-industry atmosphere [J]. Corros. Sci., 1982, 22(9): 867-876
[12] Oblonsky L J, Devine T M. Corrosion of carbon steels in CO2-saturated brine. A surface enhanced Raman spectroscopic study [J]. J. Electrochem. Soc., 1997, 144(4): 1252-1260
[13] Colomban Ph, Cherifi S, Despert G. Raman identification of corrosion products on automotive galvanized steel sheets [J]. J. Raman Spectrosc., 2008, 39(7): 881-886
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[7] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[10] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] 冯亚丽,白子恒,陈利红,魏丹,张东玖,姚琼,吴俊升,董超芳,肖葵. Corten-A耐候钢在模拟污染海洋大气环境中的加速腐蚀相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 519-526.
[12] 朱亦晨,刘光明,刘欣,裴锋,田旭,师超. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[13] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[14] 付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[15] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.