Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (6): 550-556    DOI: 10.11902/1005.4537.2018.172
  研究报告 本期目录 | 过刊浏览 |
红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究
朱亦晨1,刘光明1(),刘欣2,裴锋2,田旭2,师超1
1. 南昌航空大学材料科学与工程学院 南昌 330063
2. 国网江西省电力有限公司电力科学研究院 南昌 330096
Investigation on Interrelation of Field Corrosion Test and Accelerated Corrosion Test of Grounding Materials in Red Soil Environment
ZHU Yichen1,LIU Guangming1(),LIU Xin2,PEI Feng2,TIAN Xu2,SHI Chao1
1. School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2. State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, China
全文: PDF(3743 KB)   HTML
摘要: 

通过现场埋设实验和室内加速腐蚀实验,结合失重测试以及腐蚀形貌和腐蚀产物分析,研究了8种典型接地材料在红壤环境中的腐蚀行为,计算了加速腐蚀实验的加速比及相关性系数。结果表明,不同接地材料在相同加速腐蚀环境下有不同的腐蚀加速比,其腐蚀机理与现场埋设试样基本一致,其中Q235钢以及铜质接地材料腐蚀产物与现场埋样结果出现差异的原因主要与土壤中的微生物活性和CO2溶解度有关。相关性分析表明,加速腐蚀与现场埋设实验的Pearson相关系数P为0.9663,可以近似的通过加速腐蚀实验结果对红壤地区接地材料的使用寿命进行评估。

关键词 接地材料土壤腐蚀加速腐蚀实验相关性    
Abstract

The corrosion behavior of eight typical grounding materials in red soil environment were studied via buried test in real red soil and accelerated corrosion test, as well as weight-loss measurement, corrosion morphology and corrosion product composition analysis. And then the acceleration ratio and interrelation rate between accelerated corrosion test and field corrosion test were calculated. The results showed that different grounding materials had different corrosion acceleration ratios in the same accelerated corrosion test, and the corrosion mechanism of accelerated corrosion test is basically consistent with that of field corrosion test. However, after accelerated corrosion test and field corrosion test, the compositions of the formed corrosion products on Q235 steel and Cu grounding material were all different, because of the differences of microbial activity and CO2 solubility in soils. Correlation analysis results showed that the Pearson correlation coefficient (P) between accelerated corrosion test and field corrosion test was 0.9663, in other word, the service life of grounding materials buried in the field could be evaluated by the accelerated corrosion test.

Key wordsgrounding meterial    soil corrosion    accelerated corrosion test    interrelation
收稿日期: 2018-11-20     
ZTFLH:  TG172.4  
基金资助:国家自然科学基金(51961028);国家电网公司科技项目(52182017000Y)
通讯作者: 刘光明     E-mail: gemliu@126.com
Corresponding author: Guangming LIU     E-mail: gemliu@126.com
作者简介: 朱亦晨,男,1996年生,硕士生

引用本文:

朱亦晨,刘光明,刘欣,裴锋,田旭,师超. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
Yichen ZHU, Guangming LIU, Xin LIU, Feng PEI, Xu TIAN, Chao SHI. Investigation on Interrelation of Field Corrosion Test and Accelerated Corrosion Test of Grounding Materials in Red Soil Environment. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 550-556.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.172      或      https://www.jcscp.org/CN/Y2019/V39/I6/550

图1  实验装置示意图
MaterialRust removal solutionCleaning time / minCleaning temperature / ℃
Q235 steel

500 mL HCl (relative density 1.19),

3.5 g C6H12N4, 500 mL pure water

1020~25

Galvanized steel /

zinc clad steel

100 g (NH4)2S2O8, 1000 mL pure water520~25

Copper /

copper clad steel

500 mL HCl (relative density 1.19),

500 mL pure water

320~25
Zinc-magnesium alloy and copper clad steel100 g (NH4)2S2O8, 1000 mL pure water520~25
Conductive coated steel1000 mL pure water1520~25
Stainless steel clad steel

100 mL HNO3 (relative density 1.41),

900 mL pure water

2060
表1  清洗液配方及清洗参数
图2  现场埋样和加速腐蚀实验条件下接地材料的腐蚀速率
图3  红壤中接地材料现场腐蚀实验296 d后的宏观腐蚀形貌
图4  红壤中接地材料加速腐蚀实验30 d后的宏观腐蚀形貌
图5  红壤中接地材料现场腐蚀实验296 d后的微观腐蚀形貌
图6  红壤中接地材料加速腐蚀30 d后的微观腐蚀形貌
MaterialCorrosion test methodMain components of corrosion product
Q235 steelField corrosion testFeOOH, Fe2O3, Fe3O4, FeS, SiO2
Accelerated corrosion testFeOOH, Fe2O3, Fe3O4, SiO2
Galvanized steelField corrosion testZnO, FeOOH, Fe2O3, SiO2
Accelerated corrosion testZnO, FeOOH, Fe2O3, SiO2
Zinc clad steelField corrosion testZn, ZnO, SiO2
Accelerated corrosion testZn, ZnO, SiO2
Zinc-magnesium alloy and copper clad steelField corrosion testZn, Zn(OH)2, MgCO3, SiO2
Accelerated corrosion testZn, Zn(OH)2, MgCO3, SiO2
CopperField corrosion testCu, CuO, Cu2O, Cu2(OH)2CO3
Accelerated corrosion testCu, CuO, Cu2O
Copper clad steelField corrosion testCu, CuO, Cu2O, Cu2(OH)2CO3
Accelerated corrosion testCu, CuO, Cu2O
表2  试样腐蚀产物的XRD分析结果
图7  加速腐蚀实验与现场腐蚀实验的Pearson相关性
[1] Feng N Z, Li Z Z, Li H T, et al. Review on research progress of technologies for corrosion protection and monitoring of grounding grid of high voltage transformer substation [J]. Corros. Sci. Prot. Technol., 2018, 30: 331
[1] (冯南战, 李志忠, 李亨特等. 高压变电站接地网的腐蚀防护与监测技术研究进展 [J]. 腐蚀科学与防护技术, 2018, 30: 331)
[2] Wei W, Wu X Q, Ke W, et al. Research progress on corrosion and protection of grounding grid materials [J]. Corros. Sci. Prot. Technol., 2015, 27: 273
[2] (魏巍, 吴欣强, 柯伟等. 接地网材料腐蚀与防护研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 273)
[3] Xu S, Yang M X, Liu K, et al. Corrosion investigation and protection measures for the 500 kV substation grounding grid [J]. Insulat. Surge Arrest., 2017, (6): 69
[3] (徐松, 杨漫兮, 刘凯等. 500 kV变电站接地网腐蚀分析及防护措施 [J]. 电瓷避雷器, 2017, (6): 69)
[4] Feng G Q, Jin M H, Huang H T. An application of grey correlation degree in the evaluation method of accelerated corrosion tests of soil [J]. Corros. Prot., 2000, 21: 481
[4] (冯国强, 金名惠, 黄辉桃. 灰关联度在土壤腐蚀加速试验方法评价中的应用 [J]. 腐蚀与防护, 2000, 21: 481)
[5] Huang T, Chen X P, Wang X D, et al. Indoor accelerated corrosion test method for steel in simulated acidic soil environment [J]. Mater. Prot., 2014, 47(10): 58
[5] (黄涛, 陈小平, 王向东等. 实验室模拟酸性土壤中钢材的加速腐蚀 [J]. 材料保护, 2014, 47(10): 58)
[6] Pei F, Tian Y, Liu P, et al. Corrosion behavior of Q235 carbon steel in red soil [J]. Corros. Prot., 2016, 37: 715
[6] (裴锋, 田野, 刘平等. Q235碳钢在红壤中的腐蚀行为 [J]. 腐蚀与防护, 2016, 37: 715)
[7] Du H. Study on accelerated corrosion experiments of Q235 steel in Da Gang soil by electrolyze and galvanic methods [D]. University of Science and Technology Beijing, 2008
[7] (杜鹤. Q235碳钢在大港土壤中电解及电偶加速腐蚀试验研究 [D]. 北京科技大学, 2008)
[8] Li J, Su H, Chai F, et al. Simulated corrosion test of Q235 steel in diatomite soil [J]. J. Iron Steel Res. Int., 2015, 22: 352
[9] Liu X, Zhu Y C, Pei F, et al. Galvanic corrosion behavior of Q235 steel-red copper in acid red soil of different temperatures [J]. Surf. Technol., 2018, 47(9): 157
[9] (刘欣, 朱亦晨, 裴锋等. Q235钢-紫铜在不同温度酸性红壤中的电偶腐蚀行为 [J]. 表面技术, 2018, 47(9): 157)
[10] Zhou K Y, Chen D H, Huang H Z, et al. Study on high-efficiency anti-corrosion and electrical conductivity of grounding material of zinc & magnesium alloy and copper and application [J]. Petrol. Refinery Eng., 2010, 40(9): 29
[10] (周开颜, 陈德洪, 黄会忠等. 锌镁合金铜接地材料高效防腐导电性能的研究及其应用 [J]. 炼油技术与工程, 2010, 40(9): 29)
[11] Wang S X, Du N, Liu D X, et al. Influence of soil water content adjusted by simulated acid rain on corrosion behavior of X80 steel in red soil [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 147
[11] (王帅星, 杜楠, 刘道新等. 模拟酸雨作用下红壤含水量对X80钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2018, 38: 147)
[12] Dong C F, Li X G, Wu J W, et al. Review in experimentation and data processing of soil corrosion [J]. Corros. Sci. Prot. Technol., 2003, 15: 154
[12] (董超芳, 李晓刚, 武俊伟等. 土壤腐蚀的实验研究与数据处理 [J]. 腐蚀科学与防护技术, 2003, 15: 154)
[13] Nie X H, Li X G, Li Y L, et al. Simulative and accelerative experimentation of carbon steel corrosion in soil [J]. J. Mater. Eng., 2012, (1): 59
[13] (聂向晖, 李晓刚, 李云龙等. 碳钢的土壤腐蚀模拟加速实验 [J]. 材料工程, 2012, (1): 59)
[14] Wu T Q, Xu J, Yan M C, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution [J]. Corros. Sci., 2014, 83: 38
[15] Zhu M, Du C W, Li X G, et al. Corrosion behavior of pure copper and copper-clad steels in soil at Dagang district [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 496
[15] (朱敏, 杜翠薇, 李晓刚等. 纯Cu和铜包钢在大港土壤环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2013, 33(6): 496)
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 冯亚丽,白子恒,陈利红,魏丹,张东玖,姚琼,吴俊升,董超芳,肖葵. Corten-A耐候钢在模拟污染海洋大气环境中的加速腐蚀相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 519-526.
[3] 于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[4] 黄涛,陈小平,王向东,米丰毅,刘芮,李向阳. pH值对Q235钢在模拟土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38.
[5] 钟西舟, 王振尧, 刘艳洁, 王彬彬, 白芳, 窦志宏. 镀锌钢在模拟海洋大气环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(2): 151-155.
[6] 么惠平, 闫茂成, 杨旭, 孙成. X80管线钢红壤腐蚀初期电化学行为[J]. 中国腐蚀与防护学报, 2014, 34(5): 472-476.
[7] 王振尧, 于全成, 陈军君, 王军, 徐松, 胡波涛. 周期干湿浸条件下P265GH钢和Q235钢的大气腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34(1): 53-58.
[8] 骆 鸿 李晓刚 董超芳 肖 葵. 304不锈钢在热带海洋大气下暴露实验
和加速腐蚀实验研究
[J]. 中国腐蚀与防护学报, 2013, 33(3): 193-198.
[9] 杨 超, 张慧霞 郭为民 付玉彬. 添加双氧水对高强度低合金钢在海水中
腐蚀影响的研究
[J]. 中国腐蚀与防护学报, 2013, 33(3): 205-210.
[10] 周和荣,马坚,李晓刚,揭敢新,冯皓,王俊,赵钺. 高强铝合金在不同SO2模拟环境中的腐蚀行为及相关性研究[J]. 中国腐蚀与防护学报, 2011, 31(6): 446-452.
[11] 聂向晖, 李晓刚,李云龙,李记科, 张鸿博. 土壤腐蚀加速试验的加速比与动力学相关性研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 208-213.
[12] 章小鸽. 镀锌保护钢铁的效率和新型锌镀层的发展前景[J]. 中国腐蚀与防护学报, 2010, 30(2): 166-170.
[13] 黄家怿 邱于兵 郭兴蓬. 采用聚类分析研究X70钢在库尔勒土壤中初期电化学噪声特征[J]. 中国腐蚀与防护学报, 2009, 29(6): 453-458.
[14] 苏艳; 何德洪; 张伦武; 易平 . 跟踪太阳反射聚能自然加速试验光热强化效应和相关性研究[J]. 中国腐蚀与防护学报, 2008, 28(5): 311-315 .
[15] 王永红; 章钢娅; 鹿中晖; 李英志; 孙慧珍 . 铅、铝、铜土壤腐蚀随季节变化规律研究[J]. 中国腐蚀与防护学报, 2007, 27(6): 326-328 .