Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (3): 199-204    
  本期目录 | 过刊浏览 |
Q235钢在北京土壤环境中的腐蚀行为
朱 敏 杜翠薇 李晓刚 刘智勇 姚文涛 黄 亮
北京科技大学材料科学与工程学院 北京 100083
Corrosion Behavior of Q235 Steel in Beijing
Soil Environment
ZHU Min, DU Cuiwei, LI Xiaogang, LIU Zhiyong, YAO Wentao, HUANG Liang
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(4862 KB)  
摘要: 通过现场实验(1,2和2.5 a)和电化学阻抗谱(EIS)的测试,并结合腐蚀形貌宏观观察,SEM,XRD及失重法对Q235钢在北京土壤环境中的腐蚀行为及机理进行了研究。结果表明:现场埋样1,2和2.5 a的Q235钢的腐蚀特征均表现为全面腐蚀,且局部点蚀程度严重。随埋样时间的延长,Q235钢的腐蚀速率先增加后略有减小, 其平均点蚀深度和最大点蚀深度均增加。腐蚀产物均主要由α-FeOOH,β-FeOOH,γ-FeOOH及γ-Fe2O3组成。随埋样时间的延长,α-FeOOH相对含量有所增加,腐蚀产物层的致密性及连续性有所改善,但腐蚀产物层不具有良好的保护性。
关键词 Q235钢北京土壤EIS腐蚀行为    
Abstract:The corrosion behavior of the Q235 carbon steel in Beijing soil environment was investigated by burying test in nature field for one year, two years and two point five years, electrochemical impedance spectroscopy(EIS) test, morphology observations, and weight-loss method. The results showed that the general corrosion occurred mainly on the Q235 carbon steel in Beijing soil, but the serious pitting corrosion was observed locally. With the increase of burying time, the average depth of pitting and the deepest depth of pitting both increased, while the corrosion rate increased first and then decreased. The corrosion product of the Q235 carbon steel mainly consisted of α-FeOOH, β-FeOOH, γ-FeOOH, and γ-Fe2O3. With the increase of burying time, the content of α-FeOOH increased, meanwhile the compactness and continuity of the corrosion product layer improved, but it could not protect the substrate.
Key wordskey words: Q235 steel    Beijing soil    EIS    corrosion behavior
    
ZTFLH:  TG172.4  

引用本文:

朱 敏 杜翠薇 李晓刚 刘智勇 姚文涛 黄 亮. Q235钢在北京土壤环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2013, 33(3): 199-204.
. Corrosion Behavior of Q235 Steel in Beijing
Soil Environment. Journal of Chinese Society for Corrosion and protection, 2013, 33(3): 199-204.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I3/199

[1] Meng X L. A study of corrosion of mild steel in soil [J]. J. Chin. Soc. Corros. Prot., 1997, 17(4): 291-294
(孟厦兰. 苏打盐土中低碳钢的自然腐蚀规律 [J]. 中国腐蚀与防护学报, 1997, 17(4): 291-294)
[2] Li M C, Lin H C, Cao C N. Study on soil corrosion of carbon steel by electrochemical impedance spectroscopy(EIS) [J]. J. Chin. Soc. Corros. Prot., 2000, 20(2): 111-117
(李谋成, 林海潮, 曹楚南. 碳钢在土壤中腐蚀的电化学阻抗谱特征 [J]. 中国腐蚀与防护学报, 2000, 20(2): 111-117)
[3] Lorenz W J, Mansfeld F. Determination of corrosion rates by electrochemical DC and AC methods [J]. Corros. Sci., 1981, 21(9): 647-672
[4] Murray J N, Moran P J. Influence of moisture on corrosion of pipeline steel in soil using in-situ impedance spectroscopy [J]. Corrosion, 1989, 45(1): 34-42
[5] GB/T 16545-1996 Removal of corrosion products from corrosion test specimens of metals and alloys [S]. Beijing: National Quality Supervision, 1996
(GB/T16545-1996 金属和合金的腐蚀试样上腐蚀产物的清除 [S]. 北京: 国家技术监督局, 1996)
[6] Li X G, Du C W, Dong C F, et al. Corrosion Behavior and Test of X70 Pipeline Steel [M]. Beijing: Science Press, 2006
(李晓刚, 杜翠薇, 董超芳等. X70钢的腐蚀行为与试验研究 [M]. 北京: 科学出版社, 2006)
[7] Nie X H, Li Y L, Li J K, et al. Morphology, products and corrosion mechanism analysis of Q235 carbon steel in sea-shore salty soil [J]. J. Mater. Eng., 2010, (8): 24-28
(聂向晖, 李云龙, 李记科等. Q235碳钢在滨海盐土中的腐蚀形貌、产物及机理分析 [J]. 材料工程, 2010, (8): 24-28)
[8] Chen C F, Lu M X, Zhao G X, et al. Electrochemical characteristics of CO2 corrosion of well tube steels with corrosion scales [J]. J.Chin. Soc. Corros. Prot., 2003, 23(3): 139-143
(陈长风, 路民旭, 赵国仙等. 腐蚀产物膜覆盖条件下油套管钢CO2腐蚀电化学特征 [J]. 中国腐蚀与防护学报, 2003, 23(3): 139-143)
[9] Mizoguchi T, Ishii Y, Okada T, et al. Magnetic property based characterization of rust on weathering steels [J]. Corros. Sci., 2005, 47(10): 2477-2497
[10] Mi F Y, Wang X D, Wang B, et al. Influence of microstructure on the corrosion resistance for low carbon steel [J]. J. Chin. Soc. Corros. Prot., 2010, 30(5): 391-395
(米丰毅, 王向东, 汪兵等. 显微组织对低碳钢耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2010, 30(5): 391-395)
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[3] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[4] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[6] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[7] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[8] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[9] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[10] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[11] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[12] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[13] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[14] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[15] 蔡光义,王浩伟,赵苇杭,董泽华. 添加纳米CeO2对聚氨酯涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.