Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (4): 345-352    DOI: 10.11902/1005.4537.2019.054
  研究报告 本期目录 | 过刊浏览 |
超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究
孙晓光1(),韩晓辉1,张星爽2,张志毅1,李刚卿1,董超芳2
1. 中车青岛四方机车车辆股份有限公司技术工程部 青岛 266111
2. 北京科技大学腐蚀与防护中心 北京 100083
Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel
SUN Xiaoguang1(),HAN Xiaohui1,ZHANG Xingshuang2,ZHANG Zhiyi1,LI Gangqing1,DONG Chaofang2
1. Technical Engineering Department, CRRC Qingdao Sifang Co. , Ltd. , Qingdao 266111, China
2. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(7698 KB)   HTML
摘要: 

采用不同配比柠檬酸钝化液对焊接接头进行化学钝化,借助电子背散射衍射 (EBSD) 和X射线衍射 (XRD) 对304L不锈钢手工电弧焊和氩弧焊两种焊接接头组织结构进行表征,借助电化学测试研究了焊接接头不同区域钝化后的电化学性能,通过X射线光电子能谱 (XPS) 分析了焊接接头化学钝化后表面钝化膜的成分。结果表明,焊缝区采用316L不锈钢焊丝进行填充,点蚀电位最高,母材区晶粒组织较均匀细小,耐蚀性相对较好;热影响区由于出现晶粒长大或混晶组织,点蚀电位最低。借助柠檬酸钝化液对焊接接头进行钝化,当钝化液浓度为10%,钝化时间为15 min时,点蚀电位最高,表面钝化效果最佳。

关键词 超低碳奥氏体不锈钢焊接接头化学钝化耐蚀性    
Abstract

Plates of ultra-low carbon austenitic stainless steel 304L were welded by manual arc welding and argon arc welding respectively with 316L stainless steel as filler. The welded joints were characterized by means of electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). Whilst the welded joints were chemically passivated in 10% and 20% hydrogen peroxide solutions respectively, then their corrosion behavior was examined via electrochemical means and X-ray photoelectron spectroscopy (XPS). Results showed that the pitting potential of the weld zone was the highest due to the incorporation of 316L stainless steel welding wire. The corrosion resistance of the matrix was relatively good because its inherent microstructure of relatively uniform and small grains. The heat affected zone has coarse grains and/or mixed grain structure, so that its pitting potential was the lowest, correspondingly its corrosion resistance was the worst. In a word, the welded joints of austenitic stainless steel 304L had the best corrosion resistance, when they were passivated in 10% hydrogen peroxide solution for 15 min.

Key wordsultralow carbon austenitic stainless steel    welded joint    chemical passivation    corrosion resistance
收稿日期: 2019-05-01     
ZTFLH:  TG178  
基金资助:国家重点研发专项(2017YFB0702300);国家材料环境腐蚀平台(2005DKA10400);国家自然科学基金(51871028)
通讯作者: 孙晓光     E-mail: sunx_sf@126.com
Corresponding author: Xiaoguang SUN     E-mail: sunx_sf@126.com
作者简介: 孙晓光,男,1984年生,博士,高级工程师

引用本文:

孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
Xiaoguang SUN, Xiaohui HAN, Xingshuang ZHANG, Zhiyi ZHANG, Gangqing LI, Chaofang DONG. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2019, 39(4): 345-352.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.054      或      https://www.jcscp.org/CN/Y2019/V39/I4/345

SteelCCrMoNiSiMnPSFe
304L0.02318.6---8.10.581.670.0260.005Bal.
316L0.00919.252.4812.500.361.570.0180.005Bal.
表1  304L和316L不锈钢的化学成分
Layer No.Weld methodWelding materialSizeCurrent AInterpass temp. / ℃
1HDE316L-16Φ3.27217
2HDE316L-16Φ3.210367
3HDE316L-16Φ3.210365
4HDE316L-16Φ3.210080
表2  304L不锈钢的焊接参数
图1  304L不锈钢焊接接头示意图
图2  304L不锈钢手工电弧焊和氩弧焊的EBSD结果
图3  304L不锈钢手工电弧焊和氩弧焊的XRD谱
图4  304L不锈钢手工电弧焊和氩弧焊焊接接头的极化曲线
图5  304L不锈钢经不同焊接工艺焊接后接头盐雾实验1 d后的腐蚀形貌
图6  304L-HD不锈钢接头在柠檬酸中钝化后的动态极化曲线
图7  304L-HD不锈钢焊接接头区经柠檬酸钝化后的点蚀电位
图8  304L-HWS不锈钢接头在柠檬酸中钝化后的动态极化曲线
图9  304L-HWS不锈钢焊接接头区经柠檬酸钝化后的点蚀电位
图10  经10%双氧水钝化后的304L不锈钢的XPS结果
图11  经20%双氧水钝化的304L不锈钢试样的XPS结果
[1] ZhaoR R, YangZ B, HanX H, et al. Intergranular corrosion behavior of laser lap welding joint of dissimilar austenitic stainless steels for railway vehicle [J]. Hot Work. Technol., 2018, 47(13): 60
[1] (赵瑞荣,杨志斌,韩晓辉等. 轨道车辆用异种奥氏体不锈钢激光搭接焊接头的晶间腐蚀行为 [J]. 热加工工艺, 2018, 47(13): 60)
[2] PanJ J, ZhangS, WangS K, et al. Analysis and modification of weld cracking of high temperature austenitic stainless steel pressure pipe [J]. Chem. Eng. Mach., 2018, 45: 611
[2] (潘建华, 张苏, 王世凯等. 高温奥氏体不锈钢压力管道焊缝开裂原因分析及改造 [J]. 化工机械, 2018, 45: 611)
[3] NiX Q, KongD C, WuW H, et al. Corrosion behavior of 316l stainless steel fabricated by selective laser melting under different scanning speeds [J]. J. Mater. Eng. Perform., 2018, 27: 3667
[4] WuX Q, FuY, KeW, et al. Corrosion behavior of high nitrogen austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 197
[4] (吴欣强, 付尧, 柯伟等. 高氮奥氏体不锈钢的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2016, 36: 197)
[5] FengC, HuangY H, ShenY F, et al. Galvanic corrosion and protection of 6061 aluminum alloy coupled with 30CrMnSiA steel in simulative industry-marine atmospheric environment [J]. Chin. J. Nonferrous Met., 2015, 25: 1417
[5] (冯驰, 黄运华, 申玉芳等. 6061铝合金与30CrMnSiA结构钢在模拟工业-海洋大气环境下的电偶腐蚀防护 [J]. 中国有色金属学报, 2015, 25: 1417)
[6] XueW, LiZ L, YuW, et al. Corrosion behaviors of container steel plates in tropical marine atmosphere environment [J]. J. Iron Steel Res., 2019, 31: 296
[6] (薛伟, 李曌亮, 余伟等. 集装箱钢板在湿热海洋大气环境中的腐蚀行为 [J]. 钢铁研究学报, 2019, 31: 296)
[7] WangL, DongC F, YuQ, et al. The correlation between the distribution/size of carbides and electrochemical behavior of 17Cr-1Ni ferritic-martensitic stainless steel [J]. Metall. Mater. Trans., 2019, 50A: 388
[8] XuW M, ZhanJ, LiC T, et al. Effect of surface condition of welded joint of 304L stainless steel on its corrosion behavior in boric acid solution [J]. Corros. Prot., 2018, 39: 459
[8] (徐为民, 詹静, 李成涛等. 304L不锈钢焊接接头表面状态对其在硼酸溶液中腐蚀行为的影响 [J]. 腐蚀与防护, 2018, 39: 459)
[9] YuC Y. Corrosion of welding joint of stainless steel and protection [J]. Total Corros. Control, 2016, 30(2): 26
[9] 余存烨. 不锈钢焊接接头腐蚀与防护 [J]. 全面腐蚀控制, 2016, 30(2): 26)
[10] YangG H. Improved chromate passivation process for superplastic zinc aluminum alloy [J]. Electroplat. Finish., 2012, 31(7): 34
[10] 杨改航. 超塑锌铝合金铬酸盐钝化改进工艺 [J]. 电镀与涂饰, 2012, 31(7): 34)
[11] LiuZ R. Trends in replacements for chromate conversion coatings [J]. Total Corros. Control, 2012, 26(11): 40
[11] 刘仁志. 取代铬酸盐钝化处理工艺的动向 [J]. 全面腐蚀控制, 2012, 26(11): 40)
[12] FuY H, ZhangH L, WangY, et al. Immobilization of soil contaminated by lead and cadmium using phosphate [J]. Environ. Eng., 2017, 35 (9) : 176
[12] (付煜恒, 张惠灵, 王宇 等. 磷酸盐对铅镉复合污染土壤的钝化修复研究 [J]. 环境工程, 2017, 35(9): 176)
[13] FangB, ZhangJ, JiM, et al. Effect of biochar combined with phosphate on in-situ immobilization of Pb and Cd in contaminated soil [J]. Environ. Pollut. Control, 2018, 40: 1389
[13] (房彬, 张建, 季民 等. 生物炭复配磷酸盐对Pb-Cd污染土壤原位钝化修复的研究 [J]. 环境污染与防治, 2018, 40: 1389)
[14] ZhangY, KongL Z, LuW, et al. Electrochemical properties of passive film on stainless steel surface in nitric acid solution [J]. Corros. Prot., 2018, 39: 906
[14] (张瑜, 孔令真, 路伟等. 在硝酸溶液中不锈钢表面钝化膜的电化学特性 [J]. 腐蚀与防护, 2018, 39: 906)
[15] ZhaoX B, CaoM Q. TIG welding technology of 304L stainless steel [J]. Weld. Technol., 2011, 40(7): 20
[15] (赵雪勃, 曹梅青. 304L不锈钢的钨极氩弧焊工艺 [J]. 焊接技术, 2011, 40(7): 20)
[16] LuoH, YuQ, DongC F, et al. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel [J]. Corros. Sci., 2018, 139: 185
[17] WangL, KongD C, DongC F, et al. Systematic insight into chloride concentration, applied potential and time effect on the passive film of Cu-Zn-Ni ternary alloy in alkaline solution [J]. J. Mater. Eng. Perform., 2018, 27: 4280
[18] QiaoY X, RenA, LiuF H, et al. Corrosion behavior of austenite stainless steel AL-6XN in supercritical water environment [J]. Corro. Prot., 2012, 33: 960
[18] (乔岩欣, 任爱, 刘飞华等. 奥氏体不锈钢AL-6XN在超临界水中的腐蚀行为 [J]. 腐蚀与防护, 2012, 33: 960)
[19] ManC, DongC F, LiuT T, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid [J]. Appl. Surf. Sci., 2019, 467/468: 193
[20] MaH C, LiuZ Y, DuC W, et al. Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide [J]. Corros. Sci., 2015, 100: 627
[21] MaH C, LiuZ Y, DuC W, et al. Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater [J]. Mater. Sci. Eng., 2015, A642: 22
[22] DuY, ZhaoG R, YaoH F. Study on hydrogen peroxide passivation technology and passivators with environmental protection function [J]. Shaanxi Electr. Power, 2007, 35(6): 26
[22] (杜越, 赵贵荣, 姚卉芳. 环保型钝化剂双氧水钝化工艺的研究 [J]. 陕西电力, 2007, 35(6): 26)
[23] LiG J, JiQ R, CaiY K, et al. Research of environmentally friendly passivation using citric acid formulations [J]. J. Tianjin Univ. Sci. Technol., 2012, 27(1): 48
[23] (李桂菊, 冀倩儒, 蔡永凯等. 柠檬酸环境友好钝化液配方研究 [J]. 天津科技大学学报, 2012, 27(1): 48)
[24] SongJ H, LiuN, YuanC M, et al. Research and application of the passivation technique conditions for hydrogen peroxide [J]. Nixia Electr. Power, 2017, (6): 58
[24] (宋建华, 刘娜, 袁从明等. 双氧水钝化工艺条件的研究及应用 [J]. 宁夏电力, 2017, (6): 58)
[25] LvJ L, LuoH Y. Comparison of corrosion behavior between coarse grained and nano/ultrafine grained 304 stainless steel by EWF, XPS and EIS [J]. J. Nucl. Mater., 2014, 452: 469
[26] JungR H, TsuchiyaH, FujimotoS. XPS characterization of passive films formed on type 304 stainless steel in humid atmosphere [J]. Corros. Sci., 2012, 58: 62
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[9] 黄宸,黄峰,张宇,刘海霞,刘静. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[10] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[11] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[12] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[13] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[14] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[15] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.