Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (5): 381-387    
  研究报告 本期目录 | 过刊浏览 |
质子辐照对AL-6XN在高温高压水中的腐蚀行为影响
乔岩欣1,2,任爱1,刘飞华1,郑玉贵2,唐睿3,靳硕学4,郭立平4
1. 苏州热工研究院有限公司 苏州 215004
2. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
3. 中国核动力研究设计院 成都 610041
4. 武汉大学物理科学与技术学院 武汉 430072
EFFECT OF PROTON IRRADIATION ON CORROSION BEHAVIOR OF AUSTENITE STAINLESS STEEL AL-6XN IN HIGH TEMPRATURE HIGH PRESSURE WATER
QIAO Yanxin1,2, REN Ai1, LIU Feihua1, ZHENG Yugui2, TANG Rui3, JIN Shuoxue4, GUO Liping4
1. Suzhou Nuclear Power Research Institute, Suzhou 215004
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3. Nuclear Power Institute of China, Chengdu 610041
4. School of Physics and Technology, Wuhan University, Wuhan 430072
全文: PDF(3081 KB)  
摘要: 

利用扫描电镜、能谱分析和X射线衍射研究质子辐照前后的奥氏体不锈钢AL-6XN在高温高压水中的腐蚀行为。结果表明,未辐照的样品在高温高压水中生成了完整的氧化膜,样品增重随着浸泡时间的增加而增加,温度越高腐蚀增重越显著。经过质子辐照后的材料在290℃/10 MPa水中氧化膜发生了严重的溶解,浸泡后样品出现了失重,在550℃/25 MPa超临界水中外层氧化膜发生了剥落,且浸泡时间越长氧化膜剥落越严重。质子辐照不影响氧化膜的元素组成和相结构,同时建议了质子辐照后奥氏体不锈钢在高温水中氧化膜剥落的模型。

关键词
超临界水堆
辐照腐蚀氧化膜    
Abstract

The corrosion behavior of austenite stainless steel Al-6XN exposed in high temperature high pressure water for different periods was investigated. The results showed that compact oxide scale could form on unirradiation sample in sub- and supercritical water. The oxide scale formed on irradiation sample exhibited obvious dissolution in sub-critical water and oxide scale exfoliated in supercritical water. Proton irradiation could not alter the chemical elements and phase structure of the oxide film. The oxide scale exfoliation model for the protons irradiated austenitic stainless steel exposed in high temperature water was proposed.

Key wordssupercritical water coolant reactor    irradiation    corrosion    oxide scale
收稿日期: 2011-10-25     
ZTFLH:  TG172.82  
基金资助:

江苏省自然科学基金(BK2011317)和广东核电集团项目(CGNPC2010S096-09)资助

通讯作者: 乔岩欣,     E-mail: qiaoyanxin2009@cgnpc.com.cn
Corresponding author: QIAO Yanxin     E-mail: qiaoyanxin2009@cgnpc.com.cn
作者简介: 乔岩欣,男,1980年生,博士,高级工程师,研究方向为核电站结构材料的腐蚀和应力腐蚀 乔岩欣,qiaoyanxin2009@cgnpc.com.cn

引用本文:

乔岩欣,任爱,刘飞华,郑玉贵,唐睿,靳硕学,郭立平. 质子辐照对AL-6XN在高温高压水中的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2012, 32(5): 381-387.
QIAO Yanxin, REN Ai, LIU Feihua, ZHENG Yugui, TANG Rui, JIN Shuoxue, GUO Liping. EFFECT OF PROTON IRRADIATION ON CORROSION BEHAVIOR OF AUSTENITE STAINLESS STEEL AL-6XN IN HIGH TEMPRATURE HIGH PRESSURE WATER. Journal of Chinese Society for Corrosion and protection, 2012, 32(5): 381-387.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I5/381

[1] Allen T R, Sridharan K, Tan L, et al. Materials challenges for generation IV nuclear energy systems [J]. Nucl. Technol., 2008, 162: 342-457

[2] Zhou R S, West E A, Jiao Z J, et al. Irradiation-assisted stress corrosion cracking of austenitic alloys in supercritical water [J]. J. Nucl. Mater., 2009, 395: 11-22

[3] Was G S, Ampornrat P, Gupta G, et al. Corrosion and stress corrosion cracking in supercritical water [J]. J. Nucl. Mater., 2007, 371: 176-201

[4] Yin K J, Qiu S Y, Tang R, et al. Corrosion behavior of ferritic/martensitic steel P92 in supercritical water [J]. J. Super. Flu., 2009, 50: 235-239

[5] Zhu F W, Zhang L F, Tang R, et al. Corrosion behavior of austenitic 304NG stainless steel in supercritical water at 550℃/25MPa [J]. Atom. Energ. Sci. Tech., 2009, 46: 518-522

    (朱发文, 张乐福, 唐睿等. 奥氏体304NG不锈钢在550℃/25 MPa超临界水中的腐蚀行为[J]. 原子能科学技术, 2009, 46: 518-522)

[6] Jiang E, Wen Y, Liu R C, et al. Research on general corrosion property of 304NG stainless steel [J]. Nucl. Power Eng., 2007, 26: 390-392

    (姜峨, 文燕, 刘然超等. 304NG不锈钢均匀腐蚀性能研究[J]. 核动力工程, 2007, 26: 390-392)

[7] Bai X D, Chen X W, Xu J, et al. Corrosion resistance and microstructure of zircaloy-4 subjected to ion irradiation [J]. Nucl. Ins. Meth. Phy. Res. B, 2005, 217: 293-299

[8] Wan Q, Bai X D, Zhang X Y. Impact of high dose krypton ion irradiation on corrosion behavior of laser beam welded zircaloy-4 [J]. Mater. Res. Bull., 2006, 41: 387-395

[9] Teysseyre S, Was G S. Stress corrosion cracking of austenitic alloys in supercritical water [J]. Corrosion, 2006, 62: 1100-1116

[10] Was G S, Teysseyre S, Jiao Z. Corrosion of austenitic alloys in supercritical water [J]. Corrosion, 2006, 62: 989-1005

[11] MacDonald D D. Effect of pressure on the rate of corrosion of metals in high subcritical and supercritical aqueous systems [J]. J. Super. Flu., 2004, 30: 375-382

[12] Yi Y S, Lee B H, Kim S H, et al. Corrosion and corrosion fatigue behaviors of 9Cr steel in a supercritical water condition [J]. Mater. Sci. Eng.,2006, A429: 161-168

[13] Ehlers J, Young D J, Smaardijk E J, et al. Enhanced oxidation of the 9%Cr steel P91 in water vapor containing environments [J]. Corros. Sci., 2006, 48: 3428-3454

[14] Essuman E, Meier G H, Zurek J, et al. The effect of water vapor on selective oxidation of Fe-Cr alloys [J]. Oxid. Met., 2008, 69:143-162

[15] Jin S X, Guo L P, Yang Z, et al. Microstructural evolution in nickel alloy C-276 after Ar+ ion irradiation [J]. Nucl. Ins. Meth. Phy. Res. B, 2011, 269: 209-215

[16] Characterization of Neutron-Irradiated 300-Series Stainless Steels to Assess Mechanisms of Irradiation-Assisted Stress Corrosion Cracking: Volume 1: LWR-Irradiated Type 304 and 316SS Heats with Established IASCC Susceptibility [M]. Palo Alto: EPRI, 2001

[17] Panter J, Viguier B, Cloue J M, et al. Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600 [J]. J. Nucl. Mater., 2006, 348: 213-221

[18] Yin K J. Corrosion behavior of candidate material for supercritical water reactor [D]. Beijing: Nuclear Power Institute of China, 2011

     (尹开锯. 超临界水堆(SCWR)候选材料腐蚀行为研究[D]. 北京: 中国核动力研究设计院, 2011)

[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.