Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (5): 375-380    
  研究报告 本期目录 | 过刊浏览 |
超级奥氏体不锈钢AL-6XN在超临界水中的腐蚀行为
尹开锯1,邱绍宇1,唐睿1,洪晓峰1,张乐福2,张强1
1. 中国核动力研究设计院反应堆燃料及材料重点实验室 成都 610041
2. 上海交通大学核科学与工程学院 上海 200240
CORROSION BEHAVIOR OF SUPER-AUSTENITIC STAINLESS STEEL AL-6XN IN SUPERCRITICAL WATER
YIN Kaiju1, QIU Shaoyu1, TANG Rui1, HONG Xiaofeng1, ZHANG Lefu2, ZHANG Qiang1
1. Reactor Fuel and Materials Key Laboratory, Nuclear Power Institute of China, Chengdu 610041
2. School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
全文: PDF(1413 KB)  
摘要: 

研究了超级奥氏体不锈钢AL-6XN在500℃,550℃和600℃/25 MPa超临界水中的腐蚀行为,通过扫描电镜-电子能谱(SEM-EDX)、X射线衍射(XRD)和X射线光电子能谱(XPS)分析了氧化膜的显微形貌、组织结构与成分分布。结果表明,氧化膜为双层结构,氧化膜中含Fe3O4, Cr2O3,Fe2O3和FeCr2O4相。AL-6XN在超临界水中氧化膜存在脱落现象,脱落程度随温度升高而加剧。

关键词 超级奥氏体不锈钢AL-6XN超临界水氧化氧化膜脱落    
Abstract

The corrosion behavior of super-austenitic stainless steel AL-6XN exposed to supercritical water (SCW) at 500℃, 550℃, 600℃/25 MPa respectively was investigated by means of mass loss method, scanning electron microscope/energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. A dual-layered oxide scale formed on AL-6XN, which was mainly composed of Fe3O4, Cr2O3, Fe2O3 and FeCr2O4. The oxide scale had a tendency to spall, which increased with the increase of exposure temperature.

Key wordssuper-austenitic stainless steel AL-6XN    supercritical water    oxidation    oxide scale spalling
收稿日期: 2011-09-06     
ZTFLH:  TG171  
基金资助:

核能开发项目和国家重点基础研究发展规划项目(2007CB209800)资助

通讯作者: 尹开锯     E-mail: yinkj1975@163.com
Corresponding author: YIN Kaiju     E-mail: yinkj1975@163.com
作者简介: 男,1972生,副研究员,博士,研究方向为核燃料与材料

引用本文:

尹开锯,邱绍宇,唐睿,洪晓峰,张乐福,张强. 超级奥氏体不锈钢AL-6XN在超临界水中的腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(5): 375-380.
YIN Kaiju, QIU Shaoyu, TANG Rui, HONG Xiaofeng, ZHANG Lefu, ZHANG Qiang. CORROSION BEHAVIOR OF SUPER-AUSTENITIC STAINLESS STEEL AL-6XN IN SUPERCRITICAL WATER. Journal of Chinese Society for Corrosion and protection, 2012, 32(5): 375-380.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I5/375

[1] Was G S, Ampornrat P, Gupta G, et al. Corrosion and stress corrosion cracking in supercritical water [J]. Nucl. Mater., 2007, 371 (1-3): 176-201

[2] Li H, Nishimura A, Yang W, et al. Low Activation Ferritic/Martensitic Steel, Potential Core Structure Material of Supercritical Water Cooled Reactor [A]. The 3rd International Symposium on Supercritical Water-cooled Reactors-Design and Technology[C]. Shanghai: 2007

[3] Yin K J, Qiu S Y, Tang R, et al. Porosity in supercritical water exposed ferritic-martensitic steel P91 and P92 [J]. Chin. Soc. Corros. Prot., 2010, 30(1): 1-5

    (尹开锯, 邱绍宇, 唐睿等. 铁素体-马氏体钢P91和P92在超临界水中腐蚀后氧化膜多孔性分析[J]. 中国腐蚀与防护学报, 2010, 30(1): 1-5)

[4] Abed H F, Voyiadjis Z G. Plastic deformation modeling of AL-6XN stainless steel at low and high strain rates and temperatures using a combination of bcc and fcc mechanisms of metals [J]. J. Plasticity, 2005, 21: 1618-1639

[5] Wright I G, Tortorelli P F. Oxide growth and exfoliation on alloys exposed to steam[A]. Program on Technology Innovation [C]. Palo Alto: 2007

[6] Zielinsky W, Kurzylowski K J. TEM study of the oxide scales formed on type 316 SS during annealing at 600℃ in a vacuum and air [J]. Scr. Mater., 2000, 43: 33-37

[7] Li T F. High temperature oxidation and hot corrosion of metals [M]. Beijing: Chemical Industry Press, 2003

    (李铁藩. 金属高温氧化和热腐蚀[M]. 北京: 化学工业出版社, 2003)

[8] Zhang Q, Tang R, Yin K J, et al. Corrosion behavior of hastelloy C-276 in supercritical water [J]. Corros. Sci., 2009, 51: 2092-2097

[9] Bradford S A. Fundamentals of Corrosion in Gases, Metals[M]. OH: ASM International, 1987

[10] Graham M J, Hussey R J. Transport in Growing Oxide Films, Oxidation of Metals and Associated Mass Transport[M]. Warrendale: The Metallurgical Society Inc, 1987

[1] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[3] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[4] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[6] 方旭东, 刘晓, 徐芳泓, 李瑞涛, 朱忠亮, 张乃强. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[7] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[8] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[10] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[11] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[12] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[13] 王毅,张盾. 铋系可见光催化海洋防污材料研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 375-386.
[14] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[15] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.