Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1295-1304     CSTR: 32134.14.1005.4537.2023.392      DOI: 10.11902/1005.4537.2023.392
  研究报告 本期目录 | 过刊浏览 |
激光冲击强化对镍基单晶高温合金微观组织和抗高温氧化性能的影响
李佳恒1,2, 钱伟1,2, 朱晶晶1,2, 蔡杰1,2, 花银群1,2()
1 江苏大学 先进制造与现代装备技术工程研究院 镇江 212013
2 江苏大学机械工程学院 镇江 212013
Influence of Laser Shock Peening on Microstructure and Oxidation Performance of Nickel-based Single Crystal Superalloy
LI Jiaheng1,2, QIAN Wei1,2, ZHU Jingjing1,2, CAI Jie1,2, HUA Yinqun1,2()
1 Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212013, China
2 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
引用本文:

李佳恒, 钱伟, 朱晶晶, 蔡杰, 花银群. 激光冲击强化对镍基单晶高温合金微观组织和抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1295-1304.
Jiaheng LI, Wei QIAN, Jingjing ZHU, Jie CAI, Yinqun HUA. Influence of Laser Shock Peening on Microstructure and Oxidation Performance of Nickel-based Single Crystal Superalloy[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1295-1304.

全文: PDF(16397 KB)   HTML
摘要: 

研究了激光冲击强化(LSP)对镍基单晶高温合金微观结构和氧化性的影响,首先对试样进行LSP处理,随后将试样置于980℃下进行10和150 h的氧化实验,对比分析了原始和LSP试样的微观结构、显微硬度和氧化形貌演变,最后探讨了LSP对该合金氧化性能的影响。结果表明,1次冲击后,样品表面引入了网状分布的位错,表面显微硬度从原始的420 HV增加到495 HV;3次冲击后,表面位错分布更加均匀密集,出现了位错缠结,表面显微硬度增加到约590 HV。此外,LSP在表面产生的位错为氧化过程提供了扩散通道,促进了连续的保护性氧化膜的形成,从而减少了贫Al孔洞的形成并增加了氧化膜抗剥落能力。

关键词 激光冲击强化微观演变镍基单晶高温合金元素扩散氧化    
Abstract

The impact of laser shock peening (LSP) on the microstructure and oxidation behavior of the nickel-based single crystal superalloy was investigated. The samples underwent LSP treatment, followed by oxidation for 10 and 150 h at 980oC. The microstructure, microhardness, and oxidation morphology of this alloy without and with LSP treatment were comparatively examined. Finally, the mechanism by which LSP affects the oxidation behavior of this alloy was elucidated. The result shows that after a single impact, the surface of the specimen manifested some grid-like dislocations distribution, alongside an increment in microhardness from an initial value of 420 HV to 495 HV. After three impacts, the dislocations on the surface appeared more uniformly distributed with evident entanglement, culminating in an elevation of surface microhardness to approximately 590 HV. Furthermore, the dislocations generated on the surface by LSP promoted the formation of diffusion pathways during the oxidation process, which facilitated the early formation of a continuous protective oxide scale. It decreased the formation of poor Al pits, which resulted from the development of a protective oxide scale in the subsequent stages of oxidation, thereby reducing the spalling of the oxide scale.

Key wordslaser shock peening    microstructural evolution    nickel-based single crystal superalloy    element diffusion    oxidation
收稿日期: 2023-12-20      32134.14.1005.4537.2023.392
ZTFLH:  TN249  
基金资助:国家自然科学基金(51641102)
通讯作者: 花银群,E-mail:huayq@ujs.edu.cn,研究方向为热障涂层及功能表面
Corresponding author: HUA Yinqun, E-mail: huayq@ujs.edu.cn
作者简介: 李佳恒,女,1999年生,硕士生
图1  LSP工作原理和冲击路径示意图
图2  不同条件LSP处理后镍基单晶高温合金的微观结构与成分TEM分析
图3  不同条件LSP处理后镍基单晶高温合金截面的硬度变化
图4  未处理和LSP处理的镍基单晶高温合金的加载-卸载曲线以及表面纳米硬度与弹性模量
图5  未经以及经过LSP处理的镍基单晶高温合金表面XRD谱图
图6  镍基单晶高温合金在980℃下氧化10和150 h后的XRD结果
图7  UT、LSP-1和LSP-3镍基单晶高温合金试样在980℃下氧化10 h后的表面和截面形貌
PositionNiAlCrCoO
Point 135.445.092.83.5153.16
Point 244.142.43.15.5444.82
Point 340.520.502.516.2750.20
表1  UT、LSP-1和LSP-3镍基单晶高温合金试样氧化10 h后表面成分 (atomic fraction / %)
图8  UT、LSP-1和LSP-3镍基单晶高温合金试样在980℃下氧化150 h后的表面和截面形貌
PositionNiAlCrCoTaOW
Point 140.280.718.636.40.0343.80.15
Point 216.2125.797.715.720.0744.460.04
Point 365.54.379.3412.520.974.72.6
Point 444.510.220.946.450.0647.740.08
Point 546.100.310.704.680.0148.170.03
表2  UT、LSP-1和LSP-3镍基单晶高温合金试样氧化150 h后的表面成分 (atomic fraction / %)
图9  LSP后镍基单晶高温合金的位错变化
图10  未经以及经过LSP处理的镍基单晶高温合金氧化机理示意图
1 Du Y L, Yang Y H, Diao A M, et al. Effect of solution heat treatment on creep properties of a nickel-based single crystal superalloy [J]. J. Mater. Res. Technol., 2021, 15: 4702
2 Gudivada G, Pandey A K. Recent developments in nickel-based superalloys for gas turbine applications: review [J]. J. Alloy. Compd., 2023, 963: 171128
3 Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44: 76
doi: 10.1016/j.jmst.2020.01.026
4 Yue Q Z, Liu L, Yang W C, et al. Research progress of creep behaviors in advanced Ni-based single crystal superalloys [J]. Mater. Rep., 2019, 33: 479
4 岳全召, 刘 林, 杨文超 等. 先进镍基单晶高温合金蠕变行为的研究进展 [J]. 材料导报, 2019, 33: 479
5 Sun X F, Jin T, Zhou Y Z, et al. Research progress of nickel-base single crystal superalloys [J]. Mater. China, 2012, 31(12): 1
5 孙晓峰, 金 涛, 周亦胄 等. 镍基单晶高温合金研究进展 [J]. 中国材料进展, 2012, 31(12): 1
6 Dąbek J, Prażuch J, Migdalska M, et al. The effect of various additions on the oxidation behavior of the γ/γ′ Ni-based alloy [J]. Oxid. Met., 2021, 96: 129
7 He D G, Lin Y C, Tang Y, et al. Influences of solution cooling on microstructures, mechanical properties and hot corrosion resistance of a nickel-based superalloy [J]. Mater. Sci. Eng., 2019, 746A: 372
8 Bensch M, Preußner J, Hüttner R, et al. Modelling and analysis of the oxidation influence on creep behaviour of thin-walled structures of the single-crystal nickel-base superalloy René N5 at 980oC [J]. Acta Mater., 2010, 58: 1607
9 Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects [J]. Int. Mater. Rev., 2013, 58: 315
10 AlMangour B, Yang J M. Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing [J]. Mater. Des., 2016, 110: 914
11 Sun W, Huo K, Dai F Z. Microstructure and property of IN718/WCP composite coating fabricated by electromagnetic compound field-assisted laser cladding [J]. J. Drain. Irrig. Mach. Eng., 2022, 40: 740
11 孙 伟, 霍 坤, 戴峰泽. 电磁辅助激光熔覆IN718/WCP复合涂层组织及性能 [J]. 排灌机械工程学报, 2022, 40: 740
12 Yang H, Huang X, Guo J S, et al. High temperature oxidation resistance of arc ion plating NiCoCrAlY coating modified via laser shock peening [J]. J. Alloy. Compd., 2022, 911: 164708
13 Deng W W, Wang C Y, Lu H F, et al. Progressive developments, challenges and future trends in laser shock peening of metallic materials and alloys: a comprehensive review [J]. Int. J. Mach. Tools Manuf., 2023, 191: 104061
14 Niu J X, Dai F Z, Pei Z P, et al. Rolling contact fatigue performance of 316 stainless steel treated by laser shock processing [J]. J. Drain. Irrig. Mach. Eng., 2022, 40: 97
14 牛建新, 戴峰泽, 裴智鹏 等. 激光冲击强化316不锈钢的滚动接触疲劳性能 [J]. 排灌机械工程学报, 2022, 40: 97
15 Geng Y X, Dong X, Wang K D, et al. Evolutions of microstructure, phase, microhardness, and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure [J]. Opt. Laser Technol., 2020, 123: 105917
16 Montross C S, Wei T, Ye L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review [J]. Int. J. Fatigue, 2002, 24: 1021
17 Lu G X, Liu J D, Qiao H C, et al. Crack appearance of a laser shock-treated single crystal nickel-base superalloy after isothermal fatigue failure [J]. Surf. Coat. Technol., 2017, 321: 74
18 Chen S L, Zhou J Z, Huang S, et al. Mechanism of hot corrosion resistance of IN718 superalloy strengthened by laser peening [J]. J. Drain. Irrig. Mach. Eng., 2021, 39: 1068
18 陈松玲, 周建忠, 黄 舒 等. 激光喷丸强化IN718高温合金抗热腐蚀机理 [J]. 排灌机械工程学报, 2021, 39: 1068
19 Cao J D, Zhang J S, Hua Y Q, et al. Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing [J]. Mater. Charact., 2017, 125: 67
20 Cao J D, Zhang J S, Hua Y Q, et al. Improving the high temperature oxidation resistance of Ni-based superalloy GH202 induced by laser shock processing [J]. J. Mater. Process. Technol., 2017, 243: 31
21 Hu X L, Qiao H C, Zhao J B, et al. Effect of laser shock wave on thermal corrosion resistance of single crystal alloy [J]. Acta Aeronaut. Astronaut. Sin., 2022, 43: 525591
21 胡宪亮, 乔红超, 赵吉宾 等. 激光冲击波对单晶合金抗热腐蚀性能的影响 [J]. 航空学报, 2022, 43: 525591
doi: 10.7527/S1000-6893.2021.25591
22 Geng Y X, Mo Y, Zheng H Z, et al. Effect of laser shock peening on the hot corrosion behavior of Ni-based single-crystal superalloy at 750oC [J]. Corros. Sci., 2021, 185: 109419
23 Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry [J]. J. Appl. Phys., 1990, 68: 775
24 Tang Z H, Dong X, Geng Y X, et al. The effect of warm laser shock peening on the thermal stability of compressive residual stress and the hot corrosion resistance of Ni-based single-crystal superalloy [J]. Opt. Laser Technol., 2022, 146: 107556
25 Sun R J, Li L H, Zhu Y, et al. Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening [J]. J. Alloy. Compd., 2018, 747: 255
26 Srinivasan S, Garcia D B, Gean M C, et al. Fretting fatigue of laser shock peened Ti-6Al-4V [J]. Tribol. Int., 2009, 42: 1324
27 Fabbro R, Peyre P, Berthe L, et al. Physics and applications of laser-shock processing [J]. J. Laser Appl., 1998, 10: 265
28 Zhang H P, Cai Z Y, Wan Z D, et al. Microstructure and mechanical properties of laser shock peened 38CrSi steel [J]. Mater. Sci. Eng., 2020, 788A: 139486
29 Liu Y, Yu J J, Xu Y, et al. High cycle fatigue behavior of a single crystal superalloy at elevated temperatures [J]. Mater. Sci. Eng., 2007, 454A-455A: 357
30 He C, Liu L, Huang T W, et al. Dislocations in Ni-based single crystal superalloys and their influence on creep behavior [J]. Mater. Rep., 2019, 33: 2918
30 何 闯, 刘 林, 黄太文 等. 镍基单晶高温合金中的位错及其对蠕变行为的影响 [J]. 材料导报, 2019, 33: 2918
31 Hu Y B, Cheng C Q, Zhang L, et al. Microstructural evolution of oxidation film on a single crystal nickel-based superalloy at 980 °C [J]. Oxid. Met., 2018, 89: 303
32 Chapovaloff J, Rouillard F, Wolski K, et al. Kinetics and mechanism of reaction between water vapor, carbon monoxide and a chromia-forming nickel base alloy [J]. Corros. Sci., 2013, 69: 31
33 Pei H Q, Wen Z X, Zhang Y M, et al. Oxidation behavior and mechanism of a Ni-based single crystal superalloy with single α-Al2O3 film at 1000oC [J]. Appl. Surf. Sci., 2017, 411: 124
34 Jiang H, Dong J X, Zhang M C, et al. Oxidation behavior and mechanism of Inconel 740H alloy for advanced ultra-supercritical power plants between 1050 and 1170oC [J]. Oxid. Met., 2015, 84: 61
35 Pfennig A, Fedelich B. Oxidation of single crystal PWA 1483 at 950oC in flowing air [J]. Corros. Sci., 2008, 50: 2484
36 Liu C T, Sun X F, Guan H R, et al. Oxidation of the single-crystal Ni-base superalloy DD32 containing rhenium in air at 900 and 1000oC [J]. Surf. Coat. Technol., 2005, 197: 39
37 Campbell C E, Boettinger W J, Kattner U R. Development of a diffusion mobility database for Ni-base superalloys [J]. Acta Mater., 2002, 50: 775
38 Zhu Y W. Effect of surface treatment condition on oxidation behavior of DD6 Ni-based single crystal superalloy [D]. Dalian: Dalian University of Technology, 2018
38 朱亚威. 表面处理状态对DD6镍基单晶合金氧化行为的影响 [D]. 大连: 大连理工大学, 2018
39 Chen L, Zhang X Z, Gan S Y. Microstructure and hot corrosion of GH2036 alloy treated by laser shock peening [J]. JOM, 2020, 72: 754
doi: 10.1007/s11837-019-03857-2
40 Li N, Wang Q, Niu W J, et al. Effects of multiple laser shock peening impacts on microstructure and wear performance of wire-based laser directed energy deposition 17-4PH stainless steel [J]. J. Mater. Res. Technol., 2023, 25: 3222
41 Huntz A M, Balmain J, Tsaï S C, et al. Diffusion studies in oxides scales grown on alumina-and chromia-forming alloys [J]. Scr. Mater., 1997, 37: 651
42 Stechauner G, Kozeschnik E. Self-diffusion in grain boundaries and dislocation pipes in Al, Fe, and Ni and application to AlN precipitation in steel [J]. J. Mater. Eng. Perform., 2014, 23: 1576
43 Park S J, Seo S M, Yoo Y S, et al. Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys [J]. Corros. Sci., 2015, 90: 305
[1] 李开洋, 翟蕴龙, 胡新宇, 吴宏, 刘彬, 邢少华, 侯健, 张繁, 张乃强. 共晶高熵合金高温腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[2] 吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[3] 吴铭, 任延杰, 马灼春, 张思甜, 陈荐, 牛焱. F55双相不锈钢在800~1000℃纯氧气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[4] 高俊宣, 曹晗, 匡文军, 郑全, 张鹏, 钟巍华. 奥氏体钢辐照促进应力腐蚀开裂行为机制的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 835-846.
[5] 王碧辉, 刘聚, 崔志翔, 肖博, 杨天让, 张乃强. 电泳沉积制备MnCo尖晶石涂层的高温长期稳定性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 972-978.
[6] 李红玲, 郎五可. 环境友好防腐材料-聚苯胺纳米复合材料的制备及其研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 874-882.
[7] 田梦真, 王勇, 李涛, 汪川, 郭泉忠, 郭建喜. 电参数对AZ31B镁合金微弧氧化膜能耗及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[8] 张帮彦, 吴洪斌, 胡雪刚, 董家键, 郑世杰, 尹蔚蔚, 张方宇, 田礼熙, 刘光明. 机械合金化+放电等子烧结FeCrAl/La2Zr2O7 复合材料高温氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 965-971.
[9] 朱慧文, 郑黎, 张昊, 于宝义, 崔志博. BeWE43镁合金高温氧化行为及阻燃性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[10] 张佳伟, 黄峰, 汪涵敏, 郎丰军, 袁玮, 刘静. 耐候钢热轧氧化皮对快速稳定化锈层演变规律及耐蚀性影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 891-900.
[11] 王彤彤, 张隽睿, 高云, 高荣杰. NH4F-(NH4)2SO4 复合电解液中制备莲藕状TiO2 纳米管阵列及光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[12] 梁志远, 张超, 曲劲宇, 何建元, 郭亭山, 徐一鸣. 某燃气轮机燃烧室合金高温蒸汽氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 355-364.
[13] 赖天, 谢冬柏, 多树旺, 洪昊, 张豪, 汤智杰. 纯铁在模拟汽油燃烧环境中的初期氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 445-452.
[14] 刘国强, 张东方, 陈昊翔, 范志宏. 带轧皮预锈钢筋在混凝土养护期间的自然钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 505-511.
[15] 袁小虎, 李定骏, 王天剑, 郭显平, 张乃强, 朱忠亮. 超临界水环境中三种Ni-Cr涂层氧化特性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 119-129.