Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1305-1315     CSTR: 32134.14.1005.4537.2023.324      DOI: 10.11902/1005.4537.2023.324
  研究报告 本期目录 | 过刊浏览 |
Q235钢结构件表面热镀锌层的应力腐蚀及其机理
赵骞1, 张洁1, 毛锐锐2, 缪春辉1, 卞亚飞2, 滕越1, 汤文明2()
1 国网安徽省电力有限公司 电力科学研究院 合肥 230601
2 合肥工业大学材料科学与工程学院 合肥 230009
Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure
ZHAO Qian1, ZHANG Jie1, MAO Ruirui2, MIAO Chunhui1, BIAN Yafei2, TENG Yue1, TANG Wenming2()
1 Electric Power Research Institute, Anhui Electric Power Co., Ltd., State Grid, Hefei 230601, China
2 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
引用本文:

赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
Qian ZHAO, Jie ZHANG, Ruirui MAO, Chunhui MIAO, Yafei BIAN, Yue TENG, Wenming TANG. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1305-1315.

全文: PDF(18955 KB)   HTML
摘要: 

采用自制的三点弯曲应力加载装置及浸泡腐蚀实验方法,开展电网设备常用的Q235镀锌钢结构件表面镀锌层应力腐蚀行为的研究。结果表明,Q235钢板镀锌层表面应力腐蚀是ZnO、Zn(OH)2和Zn5(OH)8Cl2∙H2O等腐蚀产物的形成(明显的腐蚀坑)、脱落(无明显腐蚀坑)、再形成、再脱落的过程。随着外加应力的增大,Q235钢板镀锌层腐蚀表面的Ecorr降低,Icorr增大,电化学阻抗减小,应力腐蚀程度增加,形成更多Zn5(OH)8Cl2∙H2O腐蚀产物。建立了Q235钢板镀锌层应力腐蚀模型,阐明其应力腐蚀过程及机理。外加应力在η-Zn层中腐蚀坑应力集中部位诱发应力腐蚀裂纹,突破η-Zn层,并沿ζ-FeZn13/η-Zn界面扩展,加剧镀锌层的电化学腐蚀过程。

关键词 Q235钢结构热镀锌层应力腐蚀显微组织腐蚀机理    
Abstract

The corrosion behavior of hot-dip galvanized coating on the Q235 steel plates commonly-used in grid equipment by applied bending stress was studied via immersion test in 0.05 mol/L NaCl solution while applied bending stress with a home-made three-point bending stress loading device. The results showed that by the applied bending stress, the corrosion of the hot-dip galvanized coating on Q235 steel plate was a process of repeated formation and spallation of corrosion products, of which the former involves apparently the occurrence of corrosion pits, while the later does not. The corrosion products were mainly composed of ZnO, Zn(OH)2 and Zn5(OH)8Cl2·H2O. As the applied stress increased, the Ecorr was decreased, but the Icorr and the electrochemical impedance were increased for the hot-dip galvanized coating on Q235 steel plate. A corrosion model was established to illustrate the corrosion process and the relevant mechanism for the corrosion of the hot-dip galvanized coating/Q235 steel plate. That is, the corrosion of the hot-dip galvanized coating was speeded by the applied bending stress to form more corrosion product Zn5(OH)8Cl2·H2O, which induced the formation of cracks at the stress concentrated sites beneath the corrosion product, i.e., the corrosion pits in η-Zn layer. The cracks then penetrated through the η-Zn layer, and extended along the interface ζ-FeZn13/η-Zn. As a result, electrochemical corrosion of the galvanized coating was accelerated.

Key wordsQ235 steel structure    hot-dip galvanized layer    stress corrosion    microstructure    corrosion mechanism
收稿日期: 2023-10-16      32134.14.1005.4537.2023.324
ZTFLH:  TG174.3  
基金资助:国网安徽省电力有限公司科技项目(B3120522001G)
通讯作者: 汤文明,E-mail: wmtang69@126.com,研究方向为材料失效与可靠性评估
Corresponding author: TANG Wenming, E-mail: wmtang69@126.com
作者简介: 赵 骞,男,1990年生,硕士,工程师
图1  Q235钢板表面镀锌层截面形貌与应力腐蚀试样示意图
图2  三点弯曲应力加载装置示意图
图3  镀锌钢试样的拉伸应力-应变曲线
图4  镀锌钢试样在不同应力下0.05 mol/L NaCl溶液中浸泡144 h后的光学显微镜照片
Stress / MPam0 / gm1 / gm / g
024.301924.3010-0.0009
8925.278225.1925-0.0857
17824.964024.8588-0.1052
表1  在不同应力下镀锌钢试样浸泡前后的重量及重量变化
图5  镀锌钢试样镀锌层在不同应力条件下浸泡后表面的XRD谱
图6  无应力下镀锌钢试样腐蚀层的表面形貌及微区EDS分析结果
图7  89 MPa应力下镀锌钢试样腐蚀层的表面形貌及微区EDS分析结果
图8  178 MPa应力下镀锌钢试样腐蚀层的表面形貌及微区EDS分析结果
图9  在不同应力条件下镀锌钢试样浸泡腐蚀后的截面形貌
图10  不同应力下镀锌钢试样浸泡腐蚀后的Tafel曲线

Stress

MPa

βa

V·dec-1

βc

V·dec-1

Rp

Ω·cm2

Ecorr

V vs SCE

Icorr

μA·cm-2

1784.9616.827615.5-1.157159.93
8911.6741.0628490.9-1.04854.021
0 (No stress)1.6956.8421885.2-0.79131.29
表2  由图10的极化曲线拟合得到的电化学数据
图11  不同应力下镀锌钢试样浸泡腐蚀后的EIS谱
图12  不同应力下镀锌钢试样浸泡腐蚀后的等效电路图
图13  Q235镀锌钢镀锌层应力腐蚀模型
1 Li L M, Zhang J, Bian Y F, et al. Atmospheric corrosion characteristics and regularity of the Q235, 40Cr steels commonly-used in power grid equipment in Anhui Province [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 535
1 李乐民, 张 洁, 卞亚飞 等. 安徽省内电网设备常用Q235和40Cr钢大气腐蚀特性及其规律 [J]. 中国腐蚀与防护学报, 2023, 43: 535
doi: 10.11902/1005.4537.2022.201
2 Zhao Q, Zhang J, Li L M, et al. Study on the Atmospheric corrosion of galvanized steel in the Anhui province power grid and its influence law [J]. Mater. Prot., 2024, 57(5): 191
2 赵 骞, 张 洁, 李乐民 等. 安徽省电网用镀锌钢的大气腐蚀及其影响规律 [J]. 材料保护, 2024, 57(5): 191
3 Gu M L, Liu X, Zhang Z Y, et al. Characteristics and development status of hot-dip galvanizing and zinc alloy coating in continuous strips [J]. Mater. Prot., 2019, 52(9): 176
3 谷美玲, 刘 昕, 张子月 等. 连续板带热镀锌及锌合金镀层的特点与展望 [J]. 材料保护, 2019, 52(9): 176
4 Shibli S M A, Meena B N, Remya R. A review on recent approaches in the field of hot dip zinc galvanizing process [J]. Surf. Coat. Technol., 2015, 262: 210
5 Yadav A P, Katayama H, Noda K, et al. Effect of Fe–Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments [J]. Corros. Sci., 2007, 49: 3716
6 Carpio J, Casado J A, Álvarez J A, et al. Stress corrosion cracking of structural steels immersed in hot-dip galvanizing baths [J]. Eng. Fail. Anal., 2010, 17: 19
7 Liu C S, Dong Z C, Wang R M, et al. Atmospheric corrosion and protection of power transmission steel tower components in industrial pollution area [J]. J. Hefei Univ. Technol. (Nat. Sci.), 2023, 46: 906
7 刘昌帅, 董泽才, 王若民 等. 工业污染区输电铁塔构件的大气腐蚀与防护 [J]. 合肥工业大学学报(自然科学版), 2023, 46: 906
8 Qiu N, Yao Q, Miao Y L, et al. Corrosion behavior of angle steel galvanized layer of power tower in NaCl solution [J]. Surf. Technol., 2011, 40(5): 5
8 邱 妮, 姚 强, 苗玉龙 等. 电力铁塔角钢镀锌层在NaCl介质中的腐蚀行为研究 [J]. 表面技术, 2011, 40(5): 5
9 Wang J, Ning P D, Liu Q Q, et al. Corrosion behavior of galvanized steel in a simulated marine atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 578
9 王 瑾, 宁培栋, 刘倩倩 等. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理 [J]. 中国腐蚀与防护学报, 2023, 43: 578
10 Qu Q, Yan C W, Wan Y, et al. Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc [J]. Corros. Sci., 2002, 44: 2789
11 Zhang R K, Cheng H H, Wu Y B, et al. Corrosion behavior of galvanized steel for power transmission tower in solutions with different concentrations of NaCl and NaHSO3 [J]. Corros. Sci. Prot. Technol., 2018, 30: 585
11 张仁坤, 程红红, 吴跃斌 等. 输电铁塔用镀锌钢在不同浓度NaCl和NaHSO3中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2018, 30: 585
doi: 10.11903/1002.6495.2017.305
12 Wu W Y. Corrosion simulation study of galvanized steel in salt spray environment [D]. Harbin: Harbin Institute of Technology, 2022
12 吴唯余. 镀锌钢在盐雾环境下的腐蚀模拟研究 [D]. 哈尔滨: 哈尔滨工业大学, 2022
13 Liu X. Research on the destruction caused by stress corrosion to the galvanized steel coating of electric power tower [D]. Ji’nan: Shandong University, 2015
13 刘 霄. 输电线杆塔镀锌钢镀层应力腐蚀破坏研究 [D]. 济南: 山东大学, 2015
14 Li R, Miao C Q, Wei T H. Experimental study on corrosion behaviour of galvanized steel wires under stress [J]. Corros. Eng. Sci. Technol., 2020, 55: 622
15 Yang W J, Yang P, Li X M, et al. Influence of tensile stress on corrosion behaviour of high-strength galvanized steel bridge wires in simulated acid rain [J]. Mater. Corros., 2012, 63: 401
16 Li J J. Effect of surface condition of steel on microstructure of hot-dip galvanized coating [D]. Tianjin: Hebei University of Technology, 2019
16 李娇娇. 钢基表面状态对热镀锌层组织的影响 [D]. 天津: 河北工业大学, 2019
17 Ploypech S, Boonyongmaneerat Y, Jearanaisilawong P. Crack initiation and propagation of galvanized coatings hot-dipped at 450°C under bending loads [J]. Surf. Coat. Technol., 2012, 206: 3758
18 Marder A R. The metallurgy of zinc-coated steel [J]. Prog. Mater. Sci., 2000, 45: 191
19 Zhao Q, Tang W M, Miao C H, et al. A stress corrosion clamping device with readable stress magnitude [P]. China Pat., 219015877U, 2023
19 赵 骞, 汤文明, 缪春辉 等. 一种应力大小可读的应力腐蚀夹持装置 [P]. 中国专利, 219015877U, 2023)
20 Zhao Y, Huang H J, Wang J, et al. The stress corrosion of wind power tower tube metal in atmospheric environment [J]. Environ. Technol., 2013, 31(1): 5
20 赵 钺, 黄海军, 王 俊 等. 大气环境下风电塔筒金属材料的应力腐蚀 [J]. 环境技术, 2013, 31(1): 5
21 Li L, Gu B S, Yang P Y, et al. Electrochemical study on corrosion behavior of hot dip galvanized zinc and zinc–aluminum alloy coatings in simulated marine atmospheric environment [J]. Electroplat. Finish., 2011, 30(3): 40
21 李 黎, 顾宝珊, 杨培燕 等. 热浸镀锌及锌铝合金镀层在模拟海洋大气环境中腐蚀行为的电化学研究 [J]. 电镀与涂饰, 2011, 30(3): 40
22 Hou R, Xu G, Dai F Q, et al. Effect of coating thickness on corrosion resistance of hot galvanized plate [J]. Mater. Prot., 2017, 50(6): 5
22 侯 蓉, 徐 光, 戴方钦 等. 镀层厚度对热镀锌热轧板耐蚀性的影响 [J]. 材料保护, 2017, 50(6): 5
23 Song Y L, Fu H D, Wang Z, et al. Stress corrosion cracking of magnesium alloys: mechanism, influencing factors, and prevention technology [J]. Mater. Rep., 2019, 33: 834
23 宋雨来, 付洪德, 王 震 等. 镁合金的应力腐蚀开裂: 机理、影响因素、防护技术 [J]. 材料导报, 2019, 33: 834
24 Liu H W, Gu T Y, Zhang G A, et al. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria [J]. Corros. Sci., 2016, 102: 93
25 Liu Y W, Wang Z Y, Wang J, et al. Corrosion behavior of hot-dip galvanized steel for power transmission tower in simulated acid rain atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 426
25 刘雨薇, 王振尧, 王 军 等. 输电塔杆用热浸镀锌钢在模拟酸雨大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2014, 34: 426
doi: 10.11902/1005.4537.2014.015
26 Zheng L Y. Electrochemical study of zinc and carbon steel galvanized layer on failure process in simulated atmospheric environment [D]. Hangzhou: Zhejiang University, 2011
26 郑利云. 锌及碳钢镀锌层在模拟大气环境中失效过程的电化学研究 [D]. 杭州: 浙江大学, 2011
27 Yuan X J, Zhang J X, Zhang S M, et al. Corrosion behavior of galvanized steel for power transmission tower with breakage of zinc coating in polluted environment [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 395
27 原徐杰, 张俊喜, 张世明 等. 镀锌层破损输电杆塔用镀锌钢在干湿交替作用下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2013, 33: 395
28 Lin X L. Study on localized corrosion behavior of galvanized coatings and passive films based on SECM [D]. Nanning: Guangxi University, 2022
28 林学亮. 基于SECM探究镀锌层及其钝化膜的微区腐蚀行为 [D]. 南宁: 广西大学, 2022
29 op't Hoog C, Birbilis N, Estrin Y. Corrosion of pure Mg as a function of grain size and processing route [J]. Adv. Eng. Mater., 2008, 10: 579
30 Sun Q L, Zhang L, Dong J, et al. Study on electrochemical behavior of prestressed reinforcement in simulated concrete solution [J]. Appl. Mech. Mater., 2013, 357-360: 917
31 Lu Y. The effect of tensile deformation on the stress corrosion behavior of AZ31 magnesium alloys [D]. Taiyuan: Taiyuan University of Technology, 2021
31 鲁 晔. 拉伸变形对AZ31镁合金应力腐蚀行为影响 [D]. 太原: 太原理工大学, 2021
32 Li M, Dong N N, Shang T, et al. Study on initial corrosion behavior of Zn-Al-Mg coating and pure zinc coating in typical atmospheric environment [J]. Surf. Technol., 2024, 53(2): 120
32 黎 敏, 董妮妮, 商 婷 等. 锌铝镁镀层和纯锌镀层在典型大气环境中初期腐蚀行为研究 [J]. 表面技术, 2024, 53(2): 120
33 Mattsson E. The atmospheric corrosion properties of some common structural metals: a comparative study [J]. Mater. Perform., 1982, 21: 9
34 Xiao L. Plastic deformation of hexagonal close-packed metals [J]. Rare Met. Mater. Eng., 1995, 24(6): 21
34 肖 林. 密排六方金属的塑性变形 [J]. 稀有金属材料与工程, 1995, 24(6): 21
35 Zhang J R, Wang Y C. Study on processes of superplastic deformation of Zn-4%Al alloy [J]. J. Harbin Inst. Technol., 1985, 17(suppl.3) : 1
35 张吉人, 王雨丛. Zn-4%Al合金超塑性变形微观过程的研究 [J]. 哈尔滨工业大学学报, 1985, 17(): 1
36 Luo B H, Zhou S C. The study of superplastic mechanism of Zn-Al eutectoid alloy [J]. Mater. Sci. Eng., 1995, 13(4): 22
36 罗兵辉, 周善初. Zn-Al共析合金室温超塑性变形机理 [J]. 材料科学与工程, 1995, 13(4): 22
[1] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[2] 刘广胜, 王卫军, 周佩, 谭金颢, 丁宏鑫, 张伟, 向勇. 含杂CO2 封存条件下13CrN80套管钢腐蚀规律研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.
[3] 巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[4] 朱慧文, 郑黎, 张昊, 于宝义, 崔志博. BeWE43镁合金高温氧化行为及阻燃性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[5] 刘久云, 董立谨, 张言, 王勤英, 刘丽. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[6] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[7] 岑远遥, 廖光萌, 朱玉琴, 赵方超, 刘聪, 何建新, 周堃. 基于布拉格光纤光栅的铝合金应力腐蚀裂纹扩展监测技术[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[8] 韩东晓, 纪文会, 王通, 王巍. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[9] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[10] 谢云, 刘婷, 王雯, 周佳琳, 唐颂. 微观组织对一种超轻高强镁锂合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[11] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[12] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[13] 赵璐, 李谦, 赵天亮. 青铜器腐蚀行为与封护技术[J]. 中国腐蚀与防护学报, 2023, 43(6): 1165-1177.
[14] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[15] 罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.