Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1285-1294     CSTR: 32134.14.1005.4537.2023.365      DOI: 10.11902/1005.4537.2023.365
  研究报告 本期目录 | 过刊浏览 |
时效处理对马氏体时效硬化不锈钢显微组织和局部腐蚀性能的影响
洪孝木1, 王永强1(), 李娜2, 田凯1, 杜娟1
1 安徽工业大学材料科学与工程学院 马鞍山 243002
2 安徽工业大学冶金工程学院 马鞍山 243002
Effect of Aging on Microstructures and Localized Corrosion of Custom455 Martensitic Age-hardening Stainless Steel
HONG Xiaomu1, WANG Yongqiang1(), LI Na2, TIAN Kai1, DU Juan1
1 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
2 School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, China
引用本文:

洪孝木, 王永强, 李娜, 田凯, 杜娟. 时效处理对马氏体时效硬化不锈钢显微组织和局部腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
Xiaomu HONG, Yongqiang WANG, Na LI, Kai TIAN, Juan DU. Effect of Aging on Microstructures and Localized Corrosion of Custom455 Martensitic Age-hardening Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1285-1294.

全文: PDF(15043 KB)   HTML
摘要: 

利用OM、XRD、TEM、电化学等方法研究了时效处理对Custom455马氏体时效硬化不锈钢显微组织和抗点蚀性能的影响。结果表明,经过时效处理后试样的基体组织为板条马氏体和逆转变奥氏体,并有富铜相、Ni3Ti等第二相粒子析出。当时效时间一定、时效温度在400~550℃时,逆转变奥氏体的含量随时效温度的上升而上升,因此试样的抗点蚀性能上升;时效温度升至600℃时,试样中大量析出的第二相粒子导致试样抗点蚀性能降低。在时效温度不变时,时效时间由1 h延长至3 h,由于逆转变奥氏体含量变化不明显,且析出相的数量增多、尺寸变大,导致试样抗点蚀性能下降。

关键词 马氏体时效不锈钢时效处理点蚀逆转变奥氏体富铜析出相    
Abstract

The effect of aging treatment at 400-500oC for different times on the microstructure and pitting resistance of Custom455 martensitic age-hardening stainless steel was investigated using OM, XRD, TEM and electrochemical methods. The results show that the microstructure of the ageing-treated steels consists of lath martensite and reversed austenite, and with the change of aging temperature and time, the second phase particles such as Cu-rich phases and Ni3Ti with varying amount and size will be precipitated. For a given aging time, while the aging temperature increased, the amount of reversed austenite will also gradually increase, however the amount and size of Ni3Ti, ε-Cu and other second-phase particles will not change obviously, so that the pitting corrosion resistance of the steel increased; when the aging temperature rises to 600oC, a large number of the second-phase particles of Ni3Ti, ε-Cu and others precipitate out, which leads to a decrease in the pitting corrosion resistance of the steel. When the aging temperature is consistent while the aging time rises to 3 h, the amount of reversed austenite in the steel does not change significantly, but the amount and size of Ni3Ti, ε-Cu and other second-phase particles change significantly with the increasing aging time, which also leads to a decrease in the pitting corrosion resistance of the steel.

Key wordsMartensitic aging stainless steel    aging treatment    pitting    reversed austenite    copper-rich precipitation phase
收稿日期: 2023-11-20      32134.14.1005.4537.2023.365
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(52171059, 51971003)
通讯作者: 王永强,E-mail: yqwang@ahut.edu.cn,研究方向为金属材料的腐蚀与防护
Corresponding author: WANG Yongqiang, E-mail: yqwang@ahut.edu.cn
作者简介: 洪孝木,男,1997年生,硕士生
图1  Custom455不锈钢相图计算结果
图2  经不同条件热处理的Custom455钢金相组织
图3  经不同温度时效处理的Custom455钢的XRD谱
图4  经不同温度时效处理的Custom455钢中逆转变奥氏体含量
图5  不同参数时效处理后Custom455钢的TEM像
PositionTiCrNiMoMnFe
P-10.2113.726.500.220.5378.64
P-22.2110.6813.720.340.3264.44
表1  经600℃/3 h时效处理试样不同位置(见图5f中标记点)EDS分析结果 (mass fraction / %)
图6  不同时效处理后试样的TEM像
图7  经500℃/3 h时效处理后试样的析出相
图8  不同温度时效处理1和3 h试样的极化曲线
图9  不同温度时效处理后试样的极化曲线
图10  不同温度时效处理1和3 h试样点蚀电位的变化
图11  电化学阻抗拟合的等效电路图
图12  试样经过不同温度时效处理后的Nyquist图
图13  经不同温度时效处理1和3 h试样的Nyquist图
图14  经不同温度时效处理1和3 h试样的Bode图
SpecimenRs / Ω·cm2CPE-T / F·cm-2·s nCPE-nRp / Ω·cm2
Solid solution2.6231.5493 × 10-40.817563165
400oC-1 h2.0451.0443 × 10-40.836134278
450oC-1 h2.4849.018 × 10-50.829985357
500oC-1 h2.8927.4562 × 10-50.846897622
550oC-1 h2.796.2188 × 10-50.8823511443
600oC-1 h3.2721.0213 × 10-40.829425131
表2  Custom455不锈钢时效处理1 h在3.5%NaCl溶液中的EIS拟合参数值
SpecimenRs / Ω·cm2CPE-T / F·cm-2·s nCPE-nRp / Ω·cm2
Solid solution2.6231.5493 × 10-40.817563165
400oC-3 h4.9171.227 × 10-40.842273707
450oC-3 h2.3229.2448 × 10-50.840434261
500oC-3 h2.9178.1282 × 10-50.807684304
550oC-3 h2.8887.2198 × 10-50.859679138
600oC-3 h3.2079.8621 × 10-50.841443690
表3  Custom455不锈钢时效处理3 h在3.5%NaCl溶液中的EIS拟合参数值
图15  试样的点蚀形貌
1 Jiang Y. Alloying design, microstructures and properties of martensitic ageing stainless steel [M]. Harbin Inst. Technol. Press, 2007
1 姜 越. 马氏体时效不锈钢合金化设计与组织性能 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2007
2 Zhang C, Su J, Liang J X, et al. Research development of precipitation behavior of ultra high strength stainless steels [J]. Iron Steel, 2018, 53(4): 48
2 张 超, 苏 杰, 梁剑雄 等. 超高强度不锈钢沉淀行为研究进展 [J]. 钢铁, 2018, 53(4): 48
3 Yang Z Y, Liu Z B, Liang J X, et al. Development of maraging stainless steel [J]. Trans. Mater. Heat Treat., 2008, 29(4): 1
3 杨志勇, 刘振宝, 梁剑雄 等. 马氏体时效不锈钢的发展 [J]. 材料热处理学报, 2008, 29(4): 1
4 Liu Z B, Yang Z Y, Li Q A, et al. Effect of structure transformation in a ultra-high strength maraging stainless steel on its mechanical properties [J]. Heat Treat., 2005, 20(3): 11
4 刘振宝, 杨志勇, 李全安 等. 一种超高强度马氏体时效不锈钢的组织转变对力学性能的影响 [J]. 热处理, 2005, 20(3): 11
5 Afshari E, Ghaffari M, Nemani A V, et al. Effect of heat treatment on microstructure and tribological performance of PH 13-8Mo stainless steel fabricated via wire arc additive manufacturing [J]. Wear, 2023, 526/527: 204947
6 Li K X, Zou D N, Zhang W, et al. Effect of aging temperature on microstructure and properties of Co-Cu alloying maraging hardening stainless steel [J]. Heat Treat. Met., 2017, 42(11): 72
6 李科欣, 邹德宁, 张 威 等. 时效温度对Co-Cu合金化马氏体时效硬化不锈钢组织性能的影响 [J]. 金属热处理, 2017, 42(11): 72
7 Dennies D P. Proposed theory for the hydrogen embrittlement resistance of martensitic precipitation age-hardening stainless steels such as custom 455 [J]. J. Fail. Anal. Prev., 2013, 13: 433
8 Liu X, Zou D N, Han T, et al. Effect of Co on microstructure and properties of maraging stainless steel [J]. Heat Treat Met., 2018, 43(11): 16
8 刘 星, 邹德宁, 韩 彤 等. Co对马氏体时效硬化不锈钢组织和性能的影响 [J]. 金属热处理, 2018, 43(11): 16
9 Farahat A I Z, Hamdy A S. Influence of hot forging and alloying with Al on the electrochemical behavior and mechanical properties of austenitic stainless steel [J]. Mater. Des., 2014, 57: 538
10 Zhang Z H, Jiang S Z, Zhao L, et al. Microstructure and properties of martensite age-hardening stainless steel with vacuum heat treatment [J]. Vacuum, 2018, 55(4): 65
10 张忠和, 蒋申柱, 赵 亮 等. 马氏体时效硬化不锈钢真空热处理的组织和性能 [J]. 真空, 2018, 55(4): 65
11 Zhang X. Study on electrochemical properties of Co-containing martensitic age-hardened stainless steels [D]. Xi’an: Xi`an University of Architecture and Technology, 2019
11 张 欣. 含钴马氏体时效硬化不锈钢的电化学性能研究 [D]. 西安: 西安建筑科技大学, 2019
12 Liu Z B, Yang Z Y, Liang J X, et al. Growth behavior and precipitation of reverted austenite in ultra-high strength marageing stainless steel [J]. Heat Treat. Met., 2010, 35(2): 11
12 刘振宝, 杨志勇, 梁剑雄 等. 超高强度马氏体时效不锈钢中逆转变奥氏体的析出与长大行为 [J]. 金属热处理, 2010, 35(2): 11
13 Zhao Y G, Liu W, Fan Y M, et al. Effect of Cr content on the passivation behavior of Cr alloy steel in a CO2 aqueous environment containing silty sand [J]. Corros. Sci., 2020, 168: 108591
14 Wu W, Zeng Z P, Cheng X Q, et al. Atmospheric corrosion behavior and mechanism of a Ni-Advanced weathering steel in simulated tropical marine environment [J]. J. Mater. Eng. Perform., 2017, 26: 6075
15 Jiang W. Research on microstructures and properties in super martensitic stainless steel and formation mechanism of reversed austenite [D]. Kunming: Kunming University of Science and Technology, 2014
15 姜 雯. 超级马氏体不锈钢组织性能及逆变奥氏体机制的研究 [D]. 昆明: 昆明理工大学, 2014
16 Liu Z B, Song W S, Yang Z Y, et al. Effect of aging treatment on microstructure and mechanical properties of a ultra-high strength maraging stainless steel [J]. Trans. Mater. Heat Treat., 2005, 26(4): 52
16 刘振宝, 宋为顺, 杨志勇 等. 时效对超高强马氏体时效不锈钢组织与性能的影响 [J]. 材料热处理学报, 2005, 26(4): 52
17 Sun G Y, Chen J, Peng J C, et al. Characterization of nano-precipitates in Custom 455 stainless steel by transmission electron microscopy and atom probe tomography [J]. Mater. Charact., 2023, 205: 113308
18 Stiller K, Hättestrand M, Danoix F. Precipitation in 9Ni-12Cr-2Cu maraging steels [J]. Acta Mater., 1998, 46: 6063
19 Sha W. Thermodynamic calculations for precipitation in maraging steels [J]. Mater. Sci. Technol., 2000, 16: 1434
20 Andersson M, Stiller K, Hättestrand M. Comparison of early stages of precipitation in Mo-rich and Mo-poor maraging stainless steels [J]. Surf. Interface Anal., 2007, 39: 195
21 Lei X W, Feng Y R, Zhang J X, et al. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel [J]. Electrochim. Acta, 2016, 191: 640
22 Wang P, Zheng W W, Dai X, et al. Prominent role of reversed austenite on corrosion property of super 13Cr martensitic stainless steel [J]. J. Mater. Res. Technol., 2023, 22: 1753
23 Zhao Y G, Liu W, Zhang T Y, et al. Assessment of the correlation between M23C6 precipitates and pitting corrosion resistance of 0Cr13 martensitic stainless steel [J]. Corros. Sci., 2021, 189: 109580
24 Man C, Dong C F, Kong D C, et al. Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel [J]. Corros. Sci., 2019, 151: 108
25 Wang X J, Shen Q, Yan J J, et al. Precipitation characterization of NiAl and Cu-rich phases in dual-phase region of precipitation strengthening steel [J]. Acta Metall. Sin., 2014, 50: 1305
doi: 10.11900/0412.1961.2014.00118
25 王晓姣, 沈 琴, 严菊杰 等. 沉淀强化钢中两相区NiAl相和富Cu相的析出特点 [J]. 金属学报, 2014, 50: 1305
doi: 10.11900/0412.1961.2014.00118
26 Yuan F, Wei G Y, Gao S R, et al. Tuning the pitting performance of a Cr-13 type martensitic stainless steel by tempering time [J]. Corros. Sci., 2022, 203: 110346
27 Pan Q F, Niu B, Jia Y Z, et al. Effect of heat treatment on microstructure and mechanical properties of Fe-12Cr martensitic steel [J]. Trans. Mater. Heat Treat., 2020, 41(5): 102
27 潘钱付, 牛 犇, 贾玉振 等. 热处理工艺对Fe-12Cr马氏体钢组织与力学性能的影响 [J]. 材料热处理学报, 2020, 41(5): 102
doi: 10.13289/j.issn.1009-6264.2019-0547
[1] 易铄, 周生璇, 叶鹏, 杜晓洁, 徐震霖, 何宜柱. 选区激光熔化成形含Cu中熵合金的微观组织及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[2] 杨成, 杨广明, 王建军, 苗学良, 张译, 孙宝壮, 刘智勇. 温度对核电站用42CrMoE低合金钢在硼酸模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1345-1352.
[3] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[4] 麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[5] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[6] 凌东, 何坤, 余靓, 董立谨, 张华礼, 李玉飞, 王勤英, 张智. 高温高压CO2 环境中超级13Cr不锈钢点蚀有限元模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 303-311.
[7] 熊伊铭, 梅婉, 王泽华, 余瑞, 徐诗瑶, 吴磊, 张欣. 磁场作用下5083铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[8] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[9] 刘微. 测量不锈钢电化学噪声的非对称表面方法[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[10] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[11] 高智悦, 姜波, 樊志彬, 王晓明, 李辛庚, 张振岳. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[12] 马凯军, 王萌萌, 史振龙, 陈长风, 贾小兰. 温度对原油储罐罐底微生物腐蚀影响规律的研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[13] 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
[14] 包晔峰, 武竹雨, 陈哲, 郭林坡, 王子睿, 曹冲, 宋亓宁. 敏化处理对00Cr21NiMn5Mo2N节镍型双相不锈钢堆焊层耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
[15] 万晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.