Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 505-511     CSTR: 32134.14.1005.4537.2023.241      DOI: 10.11902/1005.4537.2023.241
  研究报告 本期目录 | 过刊浏览 |
带轧皮预锈钢筋在混凝土养护期间的自然钝化行为研究
刘国强1(), 张东方1,2,3(), 陈昊翔1, 范志宏1,2,3
1.中交四航工程研究院有限公司 水工构造物耐久性技术交通运输行业重点实验室 广州 510230
2.南方海洋科学与工程广东省实验室(珠海) 珠海 519080
3.广东港珠澳大桥材料腐蚀与工程安全国家野外科学观测研究站 珠海 519060
Natural Passivation Behavior of Pre-rusted Steel Rebar with Mill Scale in Curing Stage of Concrete
LIU Guoqiang1(), ZHANG Dongfang1,2,3(), CHEN Haoxiang1, FAN Zhihong1,2,3
1.Key Laboratory of Harbor & Marine Structure Durability Technology, Ministry of Transport, CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, China
2.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
3.National Observation and Research Station of Material Corrosion and Structural Safety of Hong Kong-Zhuhai-Macao Bridge in Guangdong, Zhuhai 519060, China
引用本文:

刘国强, 张东方, 陈昊翔, 范志宏. 带轧皮预锈钢筋在混凝土养护期间的自然钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 505-511.
Guoqiang LIU, Dongfang ZHANG, Haoxiang CHEN, Zhihong FAN. Natural Passivation Behavior of Pre-rusted Steel Rebar with Mill Scale in Curing Stage of Concrete[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 505-511.

全文: PDF(3528 KB)   HTML
摘要: 

以自然暴露3个月的带轧皮HRB400钢筋为研究对象,并与未暴露钢筋进行对比,采用开路电位测试、电化学阻抗谱测试研究了生锈钢筋和正常钢筋表面性能随浸泡时间的变化特征,并采用动电位极化曲线测试、Mott-Schottky曲线测试研究了2种钢筋的可钝化性、表面耐蚀性能与半导体行为,此外通过XPS分析了2种钢筋浸泡10 d后的组成成分。结果表明,2种钢筋均能在混凝土孔隙模拟液中完成钝化,5 d内表面均达到稳定,生锈钢筋的钝化效果、耐蚀性能均比正常钢筋略差,2种钢筋钝化前后的表面成分变化主要表现为Fe(Ⅱ)氧化物的明显降低和Fe(Ⅲ)氧化物、羟基氧化物的显著升高,正常钢筋比生锈钢筋钝化效果和耐蚀性能优异的原因是钝化后具有较低的Fe(Ⅱ)氧化物含量和较高的Fe(Ⅲ)化合物含量。

关键词 氧化皮预锈钢筋混凝土孔隙模拟液钝化行为    
Abstract

A mill scale may form on the steel surface during hot rolling process, which exhibits a certain degree of anti-corrosion effect. When a large number of steel bars are used in a construction project, most of them may be naturally exposed to atmosphere for a long time, and thus the mill scale will turn into a loose and porous yellow-brown rust scale due to atmospheric corrosion. In order to understand the nature of the passivation behavior of pre-corroded steel rebars with mill scale during the concrete curing process, the electrochemical behavior of HRB400 rebars with mill scale before (bare bar) and after being atmospherically pre-corroded for 3 months (pre-corroded bar) was comparatively assessed in simulated concrete pore solution by means of open-circuit potential measurement, electrochemical impedance spectroscopy, dynamic potential polarization curve, Mott-Schottky curve and XPS. The results show that the type of rebars can be completely passivated in the simulated concrete pore solution, whilst their surface all reached stability within 5 d. But the passivation effect and corrosion resistance of pre-corroded rebars are slightly worse than those of the bare rebars. The changes in surface composition of the two kind rebars before and after passivation are mainly due to the significant decrease in Fe(II) oxides, while significant increase in Fe(III) oxides and hydroxyl oxides, and the excellent passivation effect and corrosion resistance of the bare rebars compared with the pre-corroded rebars are due to the lower Fe(II) oxide content and higher Fe(III) compound content after passivation.

Key wordsmill scale    pre-rusted rebar    concrete pore solution    passivation behavior
收稿日期: 2023-08-05      32134.14.1005.4537.2023.241
ZTFLH:  TG174.1  
基金资助:国家重点研发计划(2019YFB1600700)
通讯作者: 刘国强,E-mail: liuguoqiang020@163.com,研究方向为材料腐蚀与防护、海洋钢筋混凝土结构耐久性;
张东方,E-mail: zhangdf8@mail.sysu.edu.cn,研究方向为材料腐蚀与防护、海洋钢筋混凝土结构耐久性
Corresponding author: ZHANG Dongfang, E-mail: zhangdf8@mail.sysu.edu.cn
作者简介: 刘国强,男,1997年生,硕士,助理工程师
图1  生锈钢筋(左)和正常钢筋(右)宏观形貌图
图2  2种钢筋在混凝土孔隙模拟液中的OCP随时间变化图
图3  2种钢筋在混凝土孔隙模拟液中浸泡不同时间的EIS
图4  拟合所采用的等效电路图
图5  2种钢筋Rt随浸泡时间变化图
图6  2种钢筋在混凝土孔隙模拟液中浸泡10 d后的动电位极化曲线图
RebarEcorr / VIcorr / μA·cm-2Ip / μA·cm-2Ep / V
Rusted rebar-0.250.871.54~2.850.37
Normal rebar-0.180.430.79~2.120.40
表1  2种钢筋动电位极化曲线拟合结果
图7  2种钢筋在混凝土孔隙模拟液中浸泡10 d后的Mott-Schottky曲线
图8  生锈钢筋和正常钢筋钝化前后表面Fe 2p3/2的XPS精细谱及拟合结果
图9  2种钢筋钝化前后表面成分中4种铁产物的相对含量
1 Jin W L, Zhao Y X. Durability of Concrete Structures[M]. 2nd ed. Beijing: Science Press, 2014: 15
1 金伟良, 赵羽习. 混凝土结构耐久性[M]. 2版. 北京: 科学出版社, 2014: 15
2 Hou B R. Marine Reinforced Concrete Corrosion and Repair Reinforcement Technology[M]. Beijing: Science Press, 2012: 1
2 侯保荣. 海洋钢筋混凝土腐蚀与修复补强技术[M]. 北京: 科学出版社, 2012: 1
3 Hou B R. The Cost of Corrosion in China[M]. Beijing: Science Press, 2017: 497
3 侯保荣. 中国腐蚀成本[M]. 北京: 科学出版社, 2017: 497
4 Ke W. Investigation Report on Corrosion in China[M]. Beijing: Chemical Industry Press, 2003: 22
4 柯 伟. 中国腐蚀调查报告[M]. 北京: 化学工业出版社, 2003: 22
5 Morris W, Vazquez M. Corrosion of reinforced concrete exposed to marine environment[J]. Corros. Rev., 2002, 20: 469
doi: 10.1515/CORRREV.2002.20.6.469
6 Ahmad S. Reinforcement corrosion in concrete structures, its monitoring and service life prediction-a review[J]. Cem. Concr. Compos., 2003, 25: 459
doi: 10.1016/S0958-9465(02)00086-0
7 Angst U, Elsener B, Larsen C K, et al. Critical chloride content in reinforced concrete-A review[J]. Cem. Concr. Res., 2009, 39: 1122
doi: 10.1016/j.cemconres.2009.08.006
8 Moser R D, Singh P M, Kahn L F, et al. Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions[J]. Corros. Sci., 2012, 57: 241
doi: 10.1016/j.corsci.2011.12.012
9 Zhang X F, Chen Y Q, Hu J M. Robust superhydrophobic SiO2/polydimethylsiloxane films coated on mild steel for corrosion protection[J]. Corros. Sci., 2020, 166: 108452
doi: 10.1016/j.corsci.2020.108452
10 Aslam R, Serdaroglu G, Zehra S, et al. Corrosion inhibition of steel using different families of organic compounds: Past and present progress[J]. J. Mol. Liq., 2022, 348: 118373
doi: 10.1016/j.molliq.2021.118373
11 An H Z, Xu Z Y, Meng G Z, et al. High corrosion resistance film on rebar by cerium modification[J]. J. Mater. Sci. Technol., 2021, 64: 73
doi: 10.1016/j.jmst.2019.09.033
12 González J A, Miranda J M, Otero E, et al. Effect of electrochemically reactive rust layers on the corrosion of steel in a Ca(OH)2 solution[J]. Corros. Sci., 2007, 49: 436
doi: 10.1016/j.corsci.2006.04.014
13 Bensabra H, Azzouz N. Study of rust effect on the corrosion behavior of reinforcement steel using impedance spectroscopy[J]. Metall. Mater. Trans., 2013, 44A: 5703
14 Miranda J M, González J A, Cobo A, et al. Several questions about electrochemical rehabilitation methods for reinforced concrete structures[J]. Corros. Sci., 2006, 48: 2172
doi: 10.1016/j.corsci.2005.08.014
15 Yang Y Z, Nakamura H, Miura T, et al. Effect of corrosion-induced crack and corroded rebar shape on bond behavior[J]. Struct. Concr., 2019, 20: 2171
doi: 10.1002/suco.v20.6
16 Choi Y S, Yi S T, Kim M Y, et al. Effect of corrosion method of the reinforcing bar on bond characteristics in reinforced concrete specimens[J]. Constr. Build. Mater., 2014, 54: 180
doi: 10.1016/j.conbuildmat.2013.12.065
17 Lee H S, Noguchi T, Tomosawa F. Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion[J]. Cem. Concr. Res., 2002, 32: 1313
doi: 10.1016/S0008-8846(02)00783-4
18 Al-tayyib A J, Khan M S, Allam I M, et al. Corrosion behavior of pre-rusted rebars after placement in concrete[J]. Cem. Concr. Res., 1990, 20: 955
doi: 10.1016/0008-8846(90)90059-7
19 Maslehuddin M, Al-Zahrani M M, Al-Dulaijan S U, et al. Effect of steel manufacturing process and atmospheric corrosion on the corrosion-resistance of steel bars in concrete[J]. Cem. Concr. Compos., 2002, 24: 151
doi: 10.1016/S0958-9465(01)00035-X
20 Novak P, Mala R, Joska L. Influence of pre-rusting on steel corrosion in concrete[J]. Cem. Concr. Res., 2001, 31: 589
doi: 10.1016/S0008-8846(01)00459-8
21 Avila-Mendoza J, Flores J M, Castillo U C. Effect of superficial oxides on corrosion of steel reinforcement embedded in concrete[J]. Corrosion, 1994, 50: 879
doi: 10.5006/1.3293478
22 Shang B H, Ma Y T, Meng M J, et al. Characterisation of passive film on HRB400 steel rebar in curing stage of concrete[J]. Chin. J. Mater. Res., 2019, 33: 659
doi: 10.11901/1005.3093.2019.068
22 商百慧, 马元泰, 孟美江 等. 混凝土养护期间HRB400钢筋钝化行为研究[J]. 材料研究学报, 2019, 33: 659
doi: 10.11901/1005.3093.2019.068
23 Wang M L, Sun Y P, Chen L, et al. Study on passive behavior of corrosion-resistant steel bars containing Cr in simulated high-alkaline concrete pore solution[J]. Acta Metall. Sin., 2023, DOI: 10.11900/0412.1961.2023.00203
23 王慕亮, 孙玉朋, 陈 磊 等. 含Cr耐蚀钢筋在模拟高碱性混凝土孔隙液中的钝化行为[J]. 金属学报, 2023, DOI: 10.11900/0412.1961.2023.00203
24 Yuan X W. Study on natural passivation and depassivaation behavior of stainless steel in simulated concrete pore solution[D]. Hefei: University of Science and Technology of China, 2021
24 苑旭雯. 模拟混凝土孔隙液中不锈钢自然钝化及脱钝行为研究[D]. 合肥: 中国科学技术大学, 2021
25 Shi J J, Sun W. Equivalent circuits fitting of electrochemical impedance spectroscopy for corrosion of reinforcing steel in concrete[J]. Corros. Sci. Prot. Technol., 2011, 23: 387
25 施锦杰, 孙 伟. 等效电路拟合钢筋锈蚀行为的电化学阻抗谱研究[J]. 腐蚀科学与防护技术, 2011, 23: 387
26 Shi J J, Ming J, Wang D Q, et al. Influence of atmospheric pre-rusting on corrosion behavior of low-alloy rebar in simulated concrete pore solution[J]. J. Build. Mater., 2017, 20: 180
26 施锦杰, 明 静, 王丹芊 等. 大气预锈对混凝土模拟液中低合金钢筋腐蚀行为的影响[J]. 建筑材料学报, 2017, 20: 180
27 Cen S B, Chen H, Liu Y, et al. Effect of CeO2 on corrosion behavior of WC-12Co coatings by high velocity oxygen fuel[J]. Acta Metall. Sin., 2016, 52: 1441
27 岑升波, 陈 辉, 刘 艳 等. CeO2对超音速火焰喷涂WC-12Co涂层腐蚀行为的影响[J]. 金属学报, 2016, 52: 1441
doi: 10.11900/0412.1961.2016.00031
28 Hamadou L, Kadri A, Benbrahim N. Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy[J]. Appl. Surf. Sci., 2005, 252: 1510
doi: 10.1016/j.apsusc.2005.02.135
29 Morrison S R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes[M]. New York: Plenum Press, 1980
30 Macdonald D D. The point defect model for the passive state[J]. J. Electrochem. Soc., 1992, 139: 3434
doi: 10.1149/1.2069096
31 Lu X Y, Lin W, Li Y J. Passivation of rebar with mill scale and stains under anodic polarization[J]. J. Build. Mater., 2015, 18: 988
31 路新瀛, 林 玮, 李源晋. 阳极极化下带热轧皮和生锈钢筋的可钝化性[J]. 建筑材料学报, 2015, 18: 988
32 Li Y J. Chemical stability of rebar with mill scale in simulated concrete pore solutions[D]. Beijing: Tsinghua University, 2016
32 李源晋. 带轧皮钢筋在模拟混凝土孔溶液中的化学稳定性研究[D]. 北京: 清华大学, 2016
33 McCafferty E. Introduction to Corrosion Science[M]. New York: Springer, 2010: 95
[1] 刘国强, 张东方, 陈昊翔, 范志宏, 熊建波, 吴清发. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[2] 贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[3] 王雷, 董俊华, 顾怀章, 柯伟. 含铜耐候钢热轧开裂现象分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 845-850.
[4] 张恒康, 黄峰, 徐云峰, 袁玮, 邱耀, 刘静. FeCrMn1.3NiAlx高熵合金显微组织演变及电化学钝化行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 218-226.
[5] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[6] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[7] 周贤良,朱敏,华小珍,吴 宁,叶志国. 氧化皮对SS400热轧带钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2012, 32(2): 109-114.
[8] 周贤良,朱敏,薛会斌,彭新元,叶志国. 热轧带钢的初期耐大气腐蚀性能[J]. 中国腐蚀与防护学报, 2011, 31(2): 139-144.
[9] 周贤良,朱敏,华小珍,叶志国,崔霞,邹爱华. 不同冷却方式对热轧带钢氧化皮结构及其耐蚀性的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 323-328.