|
|
Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究 |
吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎( ), 曹发和 |
中山大学材料学院 深圳 518107 |
|
Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy |
WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui( ), CAO Fahe |
School of Materials, Sun Yat-sen University, Shenzhen 518107, China |
引用本文:
吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
Liangliang WU,
Ruozhan YIN,
Zhaoxu CHEN,
Junyue LIANG,
Qingqing SUN,
Liankui WU,
Fahe CAO.
Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1423-1434.
1 |
Appel F, Oehring M, Wagner R. Novel design concepts for gamma-base titanium aluminide alloys [J]. Intermetallics, 2000, 8: 1283
|
2 |
Peng X M, Xia C Q, Wang Z H, et al. Development of high temperature oxidation and protection of TiAl-based alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 1116
|
2 |
(彭小敏, 夏长清, 王志辉 等. TiAl基合金高温氧化及防护的研究进展 [J]. 中国有色金属学报, 2010, 20: 1116)
|
3 |
Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
|
4 |
Zheng N, Fischer W, Grübmeier H, et al. The significance of sub-surface depletion layer composition for the oxidation behaviour of γ-titanium aluminides [J]. Scr. Metall. Mater., 1995, 33: 47
|
5 |
Lin J P, Zhang L Q, Song X P, et al. Status of research and development of light-weight γ-TiAl intermetallic based compounds [J]. Mater. China, 2010, 29: 1
|
5 |
(林均品, 张来启, 宋西平 等. 轻质γ-TiAl金属间化合物的研究进展 [J]. 中国材料进展, 2010, 29: 1)
|
6 |
Dong L M, Cui Y Y, Yang R, et al. Effects of element Si on oxidation resistance of TiAl alloys [J]. Acta Metall. Sin., 2004, 40: 383
|
6 |
(董利民, 崔玉友, 杨 锐 等. 元素Si对TiAl合金抗氧化性能的影响 [J]. 金属学报, 2004, 40: 383)
|
7 |
Li D X, Zhang G Y, Lu G, et al. Optimizing high-temperature oxidation behaviors of high-Nb-containing TiAl alloys by addition of boron [J]. Corros. Sci., 2020, 177: 108971
|
8 |
Zhang C, Zhang S H, Pan Y, et al. Effect of Sn addition on the mechanical properties and high-temperature oxidation resistance of intermetallic TiAl alloys by first principles study and experimental investigation [J]. J. Mater. Res. Technol., 2022, 21: 3666
|
9 |
Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: a review [J]. Corros. Commun., 2021, 1: 58
|
10 |
Tian S W, Zhang Y F, He A R, et al. Interdiffusion mechanism at the interface between TiAl alloy and NiCoCrAlY bond coating [J]. Surf. Coat. Technol., 2022, 444: 128687
|
11 |
Wang C X, Huang J N, Wang Y L. Preparation and properties of α-Al2O3 diffusion barrier on stainless steel 316 [J]. Corros. Commun., 2022, 8: 18
|
12 |
Yang L L, Gao F Y, Zhou Z H, et al. Oxidation behavior of the AlN coatings on the TiAl alloy at 900 C [J]. Corros. Sci., 2023, 211: 110891
|
13 |
Yang Y F, Xiao Q, Ren P, et al. Improved oxidation resistance of γ-TiAl intermetallics by sputtered Ni + CrAlYHfSiN composite coating [J]. Corros. Sci., 2021, 187: 109510
|
14 |
Ai P, Liu L X, Li X G, et al. Influence of TiAlSiN coatings on high temperature oxidation resistance of γ-TiAl based alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 306
|
14 |
(艾 鹏, 刘礼祥, 李晓罡 等. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 306)
|
15 |
Xia J J, Niu H Z, Liu M, et al. Enhancement of high temperature oxidation resistance of Ti48Al5Nb alloy via anodic anodization in NH4F containing ethylene glycol [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 96
|
15 |
(夏俊捷, 牛红志, 刘 敏 等. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能 [J]. 中国腐蚀与防护学报, 2019, 39: 96)
doi: 10.11902/1005.4537.2018.188
|
16 |
Yu B, Li Z, Zhou K X, et al. High-temperature performance of MoSi2 modified YGYZ thermal barrier coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 812
|
16 |
(宇 波, 李 彰, 周凯旋 等. MoSi2改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 812)
|
17 |
Wu L K, Wu W Y, Song J L, et al. Enhanced high temperature oxidation resistance for γ-TiAl alloy with electrodeposited SiO2 film [J]. Corros. Sci., 2018, 140: 388
|
18 |
Yan H J, Wu L K, Cao F H. Development of SiO2-based protective coatings on TiAl alloy [J]. Mater. China, 2022, 41: 345
|
18 |
(严豪杰, 伍廉奎, 曹发和. TiAl合金表面SiO2防护涂层研究进展 [J]. 中国材料进展, 2022, 41: 345)
|
19 |
Chen L, Li J H, Wang G Q, et al. Improving oxidation resistance of Si coating by isolated-particle healing [J]. Corros. Commun., 2022, 8: 9
|
20 |
Ouyang H B, Li C Y, Huang J F, et al. Self-healing ZrB2-SiO2 oxidation resistance coating for SiC coated carbon/carbon composites [J]. Corros. Sci., 2016, 110: 265
|
21 |
Wang Z, Wang Y M, Wang S Q, et al. ZrSi2/SiO2-Nb2O5/NbSi2 multi-layer coating formed on niobium alloy by HAPC combined with LPDS: Microstructure evolution and high temperature oxidation behavior [J]. Corros. Sci., 2022, 206: 110460
|
22 |
Yan H J, Tai Z F, Wu L K, et al. Improved high-temperature oxidation resistance of TC4 alloy by electrodeposited SiO2 coating [J]. Corros. Commun., 2021, 3: 34
|
23 |
Kim D G, Konar B, Jung I H. Thermodynamic optimization of the K2O-Al2O3-SiO2 system [J]. Ceram. Int., 2018, 44: 16712
|
24 |
Dettenwanger F, Schumann E, Ruhle M, et al. Microstructural study of oxidized γ-TiAl [J]. Oxid. Met., 1998, 50: 269
|
25 |
Shen Y, Ding X F, Wang F G, et al. High temperature oxidation behavior of Ti-Al-Nb ternary alloys [J]. J. Mater. Sci., 2004, 39: 6583
|
26 |
Huang J, Zhao F, Cui X Y, et al. Long-term oxidation behavior of silicon-aluminizing coating with an in-situ formed Ti5Si3 diffusion barrier on γ-TiAl alloy [J]. Appl. Surf. Sci., 2022, 582: 152444
|
27 |
Patil R N, Subbarao E C. Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400oC [J]. J. Appl. Crystallogr., 1969, 2: 281
|
28 |
McKee D W, Luthra K L. Plasma-sprayed coatings for titanium alloy oxidation protection [J]. Surf. Coat. Technol., 1993, 56: 109
|
29 |
Samsonov G V. The Oxide Handbook [M]. New York: Springer, 2013.
|
30 |
Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
|
31 |
Huffman M, McMillan P. Infrared and Raman studies of chemically vapor deposited amorphous silica [J]. J. Non-Cryst. Solids, 1985, 76: 369
|
32 |
Anastassakis E, Papanicolaou B, Asher I M. Lattice dynamics and light scattering in Hafnia and Zirconia [J]. J. Phys. Chem. Solids, 1975, 36: 667
|
33 |
Carlone C. Raman spectrum of zirconia-hafnia mixed crystals [J]. Phys. Rev., 1992, 45B: 2079
|
34 |
Morant C, Sanz J M, Galán L, et al. An XPS study of the interaction of oxygen with zirconium [J]. Surf. Sci., 1989, 218: 331
|
35 |
Wagner C D, Passoja D E, Hillery H F, et al. Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds [J]. J. Vac. Sci. Technol., 1982, 21: 933
|
36 |
Lancet D, Pecht I. Spectroscopic and immunochemical studies with nitrobenzoxadiazolealanine, a fluorescent dinitrophenyl analog [J]. Biochemistry, 1977, 16: 5150
pmid: 911817
|
37 |
Mattogno G, Righini G, Montesperelli G, et al. XPS analysis of the interface of ceramic thin films for humidity sensors [J]. Appl. Surf. Sci., 1993, 70-71: 363
|
38 |
Dementjev A P, Ivanova O P, Vasilyev L A, et al. Altered layer as sensitive initial chemical state indicator* [J]. J. Vac. Sci. Technol., 1994, 12A: 423
|
39 |
Shalvoy R B, Reucroft P J, Davis B H. Characterization of coprecipitated nickel on silica methanation catalysts by X-ray photoelectron spectroscopy [J]. J. Catal., 1979, 56: 336
|
40 |
Chen L, Wang W J, Li J H, et al. Suppressing the phase-transition-induced cracking of SiO2 TGOs by lattice solid solution [J]. J. Eur. Ceram. Soc., 2023, 43: 3201
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|