Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1423-1434     CSTR: 32134.14.1005.4537.2024.004      DOI: 10.11902/1005.4537.2024.004
  研究报告 本期目录 | 过刊浏览 |
Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究
吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎(), 曹发和
中山大学材料学院 深圳 518107
Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy
WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui(), CAO Fahe
School of Materials, Sun Yat-sen University, Shenzhen 518107, China
引用本文:

吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
Liangliang WU, Ruozhan YIN, Zhaoxu CHEN, Junyue LIANG, Qingqing SUN, Liankui WU, Fahe CAO. Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1423-1434.

全文: PDF(18270 KB)   HTML
摘要: 

针对电沉积SiO2涂层在高温氧化过程中易产生裂纹的问题,在SiO2涂层表面磁控溅射Zr沉积层来进行改善。研究表明,Zr沉积层氧化为ZrO2填补了SiO2涂层在烧结时产生的裂纹和孔洞等缺陷,并为SiO2涂层与合金基体的热膨胀系数失配提供了缓冲。此外,氧化过程中形成的ZrO2-SiO2骨架结构提高了涂层结构的稳定性。总体上,Zr-SiO2复合涂层在氧化初期显著抑制了氧向合金基体的扩散以及合金基体元素的外扩散,提高了合金的抗高温氧化性能,经氧化后复合涂层表面的氧化物颗粒明显减少,且氧化膜未出现明显生长。此外,在900℃下经过100 h的恒温氧化后,由于元素互扩散,涂层与基体界面形成了(Ti, Nb)O2/Ti5Si3 + Al2O3 + Nb3Al/TiN三层扩散层结构,提高了涂层与基体的结合力。

关键词 Zr-SiO2复合涂层抑制缺陷抗高温氧化元素扩散    
Abstract

Addressing the issue of crack formation in SiO2 coatings during high-temperature oxidation, a supplementary Zr layer was applied onto the SiO2 coating surface through magnetic sputtering. This study revealed that the Zr layer, upon oxidation, transformed into ZrO2, may effectively amend the cracks and voids that emerged during the sintering process of the SiO2 coating. Furthermore, it mitigated the thermal expansion coefficient (TEC) disparity between TiAl and SiO2 coatings. In addition, the ZrO2-SiO2 skeleton structure formed during the oxidation process may be able to improve the stability of the coating structure. The resultant Zr-SiO2 composite coating significantly impeded oxygen inward diffusion from the ambient environment to the Ti45Al8.5Nb substrate, even the outward diffusion of alloy elements in the early stage of oxidation, which notably enhancing its resistance against high-temperature oxidation. Notably, limited growth of oxide particles was observed on the alloy, with a negligible increase in the thickness of oxide scale. Additionally, following a period of 100-hour oxidation at 900oC, mutual element diffusion from both the substrate and coating led to the formation of a three-layered interdiffusion zone (Ti, Nb)O2/Ti5Si3 + Al2O3 + Nb3Al/TiN. This interdiffusion zone notably bolstered the bond strength between the composite coating and the Ti45Al8.5Nb substrate.

Key wordsZr-SiO2 composite coating    defect inhibition    high-temperature oxidation resistance    elemental diffusion
收稿日期: 2024-01-02      32134.14.1005.4537.2024.004
ZTFLH:  TG174  
基金资助:国家自然科学基金(51971205);广东省基础与应用基础研究基金(2021B1515020056)
通讯作者: 伍廉奎,E-mail: wulk5@mail.sysu.edu.cn,研究方向为材料腐蚀与防护
Corresponding author: WU Liankui, E-mail: wulk5@mail.sysu.edu.cn
作者简介: 吴亮亮,男,1999年生,硕士生
图1  制备态Zr-SiO2复合涂层表面SEM形貌及EDS谱
图2  制备态Zr-SiO2复合涂层表面XRD图谱
图3  制备态Zr-SiO2复合涂层截面SEM形貌,以及EDS元素分布分析
PositionOAlSiTiZrNb
Point 169.50.418.60.610.9-
Point 268.5-28.00.92.7-
Point 369.41.525.43.7--
Point 453.610.416.617.3-2.1
表1  图3a中各点的元素含量 (atomic fraction / %)
图4  未沉积和沉积SiO2,Zr-SiO2涂层的Ti45Al8.5Nb合金在900℃空气中的恒温氧化动力学曲线,以及Zr-SiO2复合涂层氧化100 h后的表面XRD图谱
图5  Ti45Al8.5Nb合金、SiO2涂层和Zr-SiO2复合涂层在900℃下恒温氧化100 h后的表面形貌
PositionTiAlNbSiZrKO
Area 16.227.0----66.9
Area 24.912.8-19.7-1.460.5
Area 31.91.8-10.622.30.562.9
Point 10.80.61.034.6-0.362.8
Point 28.817.81.11.4-0.870.1
Point 30.7--14.836.6-48.0
Point 46.518.8-2.07.20.764.7
表2  图5中所标记各区域和各点处的元素含量 (atomic fraction / %)
图6  Zr-SiO2复合涂层在900℃下恒温氧化100 h后的截面形貌以及EDS元素分布分析
PositionOAlSiTiZrNb
Point 182.10.49.40.97.2-
Point 271.31.317.83.75.5-
Point 373.01.917.24.82.8-
Point 469.04.68.416.4-1.5
Point 542.513.36.734.7-2.7
Point 621.020.711.139.7-7.5
表3  图6a中标记的各点处元素含量 (atomic fraction / %)
图7  Zr-SiO2复合涂层在900℃下恒温氧化100 h后截面的EPMA元素分布图
图8  经900℃, 100 h氧化的SiO2涂层的表面Raman光谱, 以及相同条件氧化后的Zr-SiO2复合涂层的表面光学形貌与标记点1和2处的Raman光谱
This workRef. [29]Ref. [30]Ref. [31]
Position 1446430
611600
Position 2149148T
181179177
192190189
225222222
268270266T
309305306
338334335
351348347
388381382
408
481476476
507500502
537534537
567557559
619615616
642637637
表4  所测图8b中位置1和2处Raman谱峰位与文献中数据的对比(T表示四方相ZrO2)
图9  Zr-SiO2复合涂层在900℃下恒温氧化100 h后表面XPS分析结果:全谱及半定量元素含量分析及Zr、Si、Al、Ti、O和K的精细谱
图10  SiO2涂层和Zr-SiO2复合涂层在烧结制备和恒温氧化过程中结构和相变化示意图
1 Appel F, Oehring M, Wagner R. Novel design concepts for gamma-base titanium aluminide alloys [J]. Intermetallics, 2000, 8: 1283
2 Peng X M, Xia C Q, Wang Z H, et al. Development of high temperature oxidation and protection of TiAl-based alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 1116
2 (彭小敏, 夏长清, 王志辉 等. TiAl基合金高温氧化及防护的研究进展 [J]. 中国有色金属学报, 2010, 20: 1116)
3 Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
4 Zheng N, Fischer W, Grübmeier H, et al. The significance of sub-surface depletion layer composition for the oxidation behaviour of γ-titanium aluminides [J]. Scr. Metall. Mater., 1995, 33: 47
5 Lin J P, Zhang L Q, Song X P, et al. Status of research and development of light-weight γ-TiAl intermetallic based compounds [J]. Mater. China, 2010, 29: 1
5 (林均品, 张来启, 宋西平 等. 轻质γ-TiAl金属间化合物的研究进展 [J]. 中国材料进展, 2010, 29: 1)
6 Dong L M, Cui Y Y, Yang R, et al. Effects of element Si on oxidation resistance of TiAl alloys [J]. Acta Metall. Sin., 2004, 40: 383
6 (董利民, 崔玉友, 杨 锐 等. 元素Si对TiAl合金抗氧化性能的影响 [J]. 金属学报, 2004, 40: 383)
7 Li D X, Zhang G Y, Lu G, et al. Optimizing high-temperature oxidation behaviors of high-Nb-containing TiAl alloys by addition of boron [J]. Corros. Sci., 2020, 177: 108971
8 Zhang C, Zhang S H, Pan Y, et al. Effect of Sn addition on the mechanical properties and high-temperature oxidation resistance of intermetallic TiAl alloys by first principles study and experimental investigation [J]. J. Mater. Res. Technol., 2022, 21: 3666
9 Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: a review [J]. Corros. Commun., 2021, 1: 58
10 Tian S W, Zhang Y F, He A R, et al. Interdiffusion mechanism at the interface between TiAl alloy and NiCoCrAlY bond coating [J]. Surf. Coat. Technol., 2022, 444: 128687
11 Wang C X, Huang J N, Wang Y L. Preparation and properties of α-Al2O3 diffusion barrier on stainless steel 316 [J]. Corros. Commun., 2022, 8: 18
12 Yang L L, Gao F Y, Zhou Z H, et al. Oxidation behavior of the AlN coatings on the TiAl alloy at 900 C [J]. Corros. Sci., 2023, 211: 110891
13 Yang Y F, Xiao Q, Ren P, et al. Improved oxidation resistance of γ-TiAl intermetallics by sputtered Ni + CrAlYHfSiN composite coating [J]. Corros. Sci., 2021, 187: 109510
14 Ai P, Liu L X, Li X G, et al. Influence of TiAlSiN coatings on high temperature oxidation resistance of γ-TiAl based alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 306
14 (艾 鹏, 刘礼祥, 李晓罡 等. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 306)
15 Xia J J, Niu H Z, Liu M, et al. Enhancement of high temperature oxidation resistance of Ti48Al5Nb alloy via anodic anodization in NH4F containing ethylene glycol [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 96
15 (夏俊捷, 牛红志, 刘 敏 等. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能 [J]. 中国腐蚀与防护学报, 2019, 39: 96)
doi: 10.11902/1005.4537.2018.188
16 Yu B, Li Z, Zhou K X, et al. High-temperature performance of MoSi2 modified YGYZ thermal barrier coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 812
16 (宇 波, 李 彰, 周凯旋 等. MoSi2改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 812)
17 Wu L K, Wu W Y, Song J L, et al. Enhanced high temperature oxidation resistance for γ-TiAl alloy with electrodeposited SiO2 film [J]. Corros. Sci., 2018, 140: 388
18 Yan H J, Wu L K, Cao F H. Development of SiO2-based protective coatings on TiAl alloy [J]. Mater. China, 2022, 41: 345
18 (严豪杰, 伍廉奎, 曹发和. TiAl合金表面SiO2防护涂层研究进展 [J]. 中国材料进展, 2022, 41: 345)
19 Chen L, Li J H, Wang G Q, et al. Improving oxidation resistance of Si coating by isolated-particle healing [J]. Corros. Commun., 2022, 8: 9
20 Ouyang H B, Li C Y, Huang J F, et al. Self-healing ZrB2-SiO2 oxidation resistance coating for SiC coated carbon/carbon composites [J]. Corros. Sci., 2016, 110: 265
21 Wang Z, Wang Y M, Wang S Q, et al. ZrSi2/SiO2-Nb2O5/NbSi2 multi-layer coating formed on niobium alloy by HAPC combined with LPDS: Microstructure evolution and high temperature oxidation behavior [J]. Corros. Sci., 2022, 206: 110460
22 Yan H J, Tai Z F, Wu L K, et al. Improved high-temperature oxidation resistance of TC4 alloy by electrodeposited SiO2 coating [J]. Corros. Commun., 2021, 3: 34
23 Kim D G, Konar B, Jung I H. Thermodynamic optimization of the K2O-Al2O3-SiO2 system [J]. Ceram. Int., 2018, 44: 16712
24 Dettenwanger F, Schumann E, Ruhle M, et al. Microstructural study of oxidized γ-TiAl [J]. Oxid. Met., 1998, 50: 269
25 Shen Y, Ding X F, Wang F G, et al. High temperature oxidation behavior of Ti-Al-Nb ternary alloys [J]. J. Mater. Sci., 2004, 39: 6583
26 Huang J, Zhao F, Cui X Y, et al. Long-term oxidation behavior of silicon-aluminizing coating with an in-situ formed Ti5Si3 diffusion barrier on γ-TiAl alloy [J]. Appl. Surf. Sci., 2022, 582: 152444
27 Patil R N, Subbarao E C. Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400oC [J]. J. Appl. Crystallogr., 1969, 2: 281
28 McKee D W, Luthra K L. Plasma-sprayed coatings for titanium alloy oxidation protection [J]. Surf. Coat. Technol., 1993, 56: 109
29 Samsonov G V. The Oxide Handbook [M]. New York: Springer, 2013.
30 Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
31 Huffman M, McMillan P. Infrared and Raman studies of chemically vapor deposited amorphous silica [J]. J. Non-Cryst. Solids, 1985, 76: 369
32 Anastassakis E, Papanicolaou B, Asher I M. Lattice dynamics and light scattering in Hafnia and Zirconia [J]. J. Phys. Chem. Solids, 1975, 36: 667
33 Carlone C. Raman spectrum of zirconia-hafnia mixed crystals [J]. Phys. Rev., 1992, 45B: 2079
34 Morant C, Sanz J M, Galán L, et al. An XPS study of the interaction of oxygen with zirconium [J]. Surf. Sci., 1989, 218: 331
35 Wagner C D, Passoja D E, Hillery H F, et al. Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds [J]. J. Vac. Sci. Technol., 1982, 21: 933
36 Lancet D, Pecht I. Spectroscopic and immunochemical studies with nitrobenzoxadiazolealanine, a fluorescent dinitrophenyl analog [J]. Biochemistry, 1977, 16: 5150
pmid: 911817
37 Mattogno G, Righini G, Montesperelli G, et al. XPS analysis of the interface of ceramic thin films for humidity sensors [J]. Appl. Surf. Sci., 1993, 70-71: 363
38 Dementjev A P, Ivanova O P, Vasilyev L A, et al. Altered layer as sensitive initial chemical state indicator* [J]. J. Vac. Sci. Technol., 1994, 12A: 423
39 Shalvoy R B, Reucroft P J, Davis B H. Characterization of coprecipitated nickel on silica methanation catalysts by X-ray photoelectron spectroscopy [J]. J. Catal., 1979, 56: 336
40 Chen L, Wang W J, Li J H, et al. Suppressing the phase-transition-induced cracking of SiO2 TGOs by lattice solid solution [J]. J. Eur. Ceram. Soc., 2023, 43: 3201
[1] 李佳恒, 钱伟, 朱晶晶, 蔡杰, 花银群. 激光冲击强化对镍基单晶高温合金微观组织和抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1295-1304.
[2] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[3] 石践, 胡学文, 何博, 杨峥, 郭锐, 汪飞. Q345NS钢焊接接头耐硫酸腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[4] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[5] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[6] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[7] 王东生 田宗军 陈志勇 沈理达 吴红艳 张平则 刘志东 徐重 黄因慧. TiAl合金表面抗高温氧化涂层研究[J]. 中国腐蚀与防护学报, 2009, 29(1): 1-8.