|
|
超临界水环境中三种Ni-Cr涂层氧化特性研究 |
袁小虎1,2, 李定骏2, 王天剑2, 郭显平2, 张乃强3, 朱忠亮3( ) |
1.重庆大学材料科学与工程学院 重庆 400044 2.东方电气集团东方汽轮机有限公司 长寿命高温材料国家重点实验室 德阳 618000 3.华北电力大学 电站能量传递转化与系统教育部重点实验室 北京 102206 |
|
Oxidation Behavior of Three Different Ni-Cr Coatings in 630oC/25 MPa Supercritical Water |
YUAN Xiaohu1,2, LI Dingjun2, WANG Tianjian2, GUO Xianping2, ZHANG Naiqiang3, ZHU Zhongliang3( ) |
1.School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 2.State Key Laboratory of Long-Life High Temperature Materials, Dongfang Electric Corporation Dongfang Turbing Co., Ltd., Deyang 618000, China 3.Key Laboratory of Power Station Energy Transfer, Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China |
引用本文:
袁小虎, 李定骏, 王天剑, 郭显平, 张乃强, 朱忠亮. 超临界水环境中三种Ni-Cr涂层氧化特性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 119-129.
Xiaohu YUAN,
Dingjun LI,
Tianjian WANG,
Xianping GUO,
Naiqiang ZHANG,
Zhongliang ZHU.
Oxidation Behavior of Three Different Ni-Cr Coatings in 630oC/25 MPa Supercritical Water[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 119-129.
1 |
Zhai X, Hou M J, Yuan Y Q, et al. Key technology of 630oC coal-fired units with over 50% efficiency [J]. Dongfang Turbine, 2021, (4): 35
|
1 |
翟 璇, 侯明军, 袁永强 等. 超50%效率的630℃等级燃煤机组关键技术研究 [J]. 东方汽轮机, 2021, (4): 35
|
2 |
Lv Z J, Peng J Q, Ju H X, et al. Suggestions for R&D of high temperature rotor forging materials for ultra-supercritical steam turbine in China [J]. Dongfang Turbine, 2018, (4): 56
|
2 |
吕振家, 彭建强, 鞠红霞 等. 我国超超临界汽轮机高温转子锻件材料研发建议 [J]. 东方汽轮机, 2018, (4): 56
|
3 |
Bischoff J, Motta A T, Eichfeld C, et al. Corrosion of ferritic-martensitic steels in steam and supercritical water [J]. J. Nucl. Mater., 2013, 441: 604
doi: 10.1016/j.jnucmat.2012.09.037
|
4 |
Tan L, Ren X, Allen T R. Corrosion behavior of 9-12% Cr ferritic-martensitic steels in supercritical water [J]. Corros. Sci., 2010, 52: 1520
doi: 10.1016/j.corsci.2009.12.032
|
5 |
Yin K J, Qiu S Y, Tang R, et al. Corrosion behavior of ferritic/martensitic steel P92 in supercritical water [J]. J. Supercrit. Fluids, 2009, 50: 235
|
6 |
Ampornrat P, Was G S. Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water [J]. J. Nucl. Mater., 2007, 371: 1
doi: 10.1016/j.jnucmat.2007.05.023
|
7 |
Ren X, Sridharan K, Allen T R. Corrosion of ferritic-martensitic steel HT9 in supercritical water [J]. J. Nucl. Mater., 2006, 358: 227
doi: 10.1016/j.jnucmat.2006.07.010
|
8 |
Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
doi: 10.1016/j.corsci.2016.10.020
|
9 |
Zhang N Q, Zhu Z L, Xu H, et al. Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water [J]. Corros. Sci., 2016, 103: 124
|
10 |
Gómez-Briceño D, Blázquez F, Sáez-Maderuelo A. Oxidation of austenitic and ferritic/martensitic alloys in supercritical water [J]. J. Supercrit. Fluids, 2013, 78: 103
doi: 10.1016/j.supflu.2013.03.014
|
11 |
Sun L, Yan W P. Calculation and analysis on oxidation rates of ferritic-martensitic steels in supercritical water [J]. J. Chin. Soc. Power Eng., 2018, 38: 156
|
11 |
孙 利, 阎维平. 超临界水工况下铁素体马氏体钢氧化速率常数的计算方法与分析 [J]. 动力工程学报, 2018, 38: 156
|
12 |
Xu H, Yuan J, Zhu Z L, et al. Oxidation behavior of ferritic-martensitic steel P92 exposed to supercritical water at 600oC/25 MPa [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 119
|
12 |
徐 鸿, 袁 军, 朱忠亮 等. 铁素体-马氏体P92钢在600oC/25MPa超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2014, 34: 119
|
13 |
Ma Y H. Study on steam oxidation resistance of Al-based and Ni-Cr-based coatings [J]. J. Chin. Soc. Power Eng., 2019, 39: 504
|
13 |
马云海. Al基涂层和Ni-Cr基涂层抗蒸汽氧化性能研究 [J]. 动力工程学报, 2019, 39: 504
|
14 |
Ren X, Sridharan K, Allen T R. Corrosion of ferritic-martensitic steel HT9 in supercritical water [J]. J. Nucl. Mater., 2006, 358: 227
doi: 10.1016/j.jnucmat.2006.07.010
|
15 |
Chen Y, Sridharan K, Allen T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843
doi: 10.1016/j.corsci.2005.08.021
|
16 |
Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
|
17 |
Zhu Z L, Xu H, Jiang D F, et al. Temperature dependence of oxidation behaviour of a ferritic-martensitic steel in supercritical water at 600~700oC [J]. Oxid. Met., 2016, 86: 483
doi: 10.1007/s11085-016-9647-7
|
18 |
Zhang N Q, Zhu Z L, Xu H, et al. Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water [J]. Corros. Sci., 2016, 103: 124
doi: 10.1016/j.corsci.2015.10.017
|
19 |
Zhang N Q, Xu H, Li B R, et al. Influence of the dissolved oxygen content on corrosion of the ferritic-martensitic steel P92 in supercritical water [J]. Corros. Sci., 2012, 56: 123
doi: 10.1016/j.corsci.2011.11.013
|
20 |
Tan L, Ren X, Allen T R. Corrosion behavior of 9-12% Cr ferritic-martensitic steels in supercritical water [J]. Corros. Sci., 2010, 52: 1520
|
21 |
Bischoff J, Motta A T, Eichfeld C, et al. Corrosion of ferritic-martensitic steels in steam and supercritical water [J]. J. Nucl. Mater., 2013, 441: 604
doi: 10.1016/j.jnucmat.2012.09.037
|
22 |
Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
|
23 |
Sennour M, Marchetti L, Martin F, et al. A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor [J]. J. Nucl. Mater., 2010, 402: 147
doi: 10.1016/j.jnucmat.2010.05.010
|
24 |
Tawancy H M, Ul-Hamid A, Abbas N M. Practical Engineering Failure Analysis [M]. New York: Marcel Dekker, 2004: 381
|
25 |
Zhong X Y, Han E H, Wu X Q. Corrosion behavior of alloy 690 in aerated supercritical water [J]. Corros. Sci., 2013, 66: 369
doi: 10.1016/j.corsci.2012.10.001
|
26 |
Zhang Q, Tang R, Yin K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water [J]. Corros. Sci., 2009, 51: 2092
doi: 10.1016/j.corsci.2009.05.041
|
27 |
Zhu Z L, Ma C H, Li Y Y, et al. Oxidation behavior of Nickel-based alloy Inconel617B in supercritical water at 700oC [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 655
|
27 |
朱忠亮, 马辰昊, 李宇旸 等. 镍基合金Inconel617B在700℃超临界水环境中的氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 655
doi: 10.11902/1005.4537.2021.145
|
28 |
He N K, Wang Y X, Zhou S G, et al. Oxidation behavior in water vapor and tribological property in atmosphere with 60% relative humidity at 580oC for Inconel 718 alloy [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 271
|
28 |
贺南开, 王永欣, 周升国 等. Inconel 718合金在580℃下水蒸气环境中的氧化行为及摩擦学性能 [J]. 中国腐蚀与防护学报, 2023, 43: 271
doi: 10.11902/1005.4537.2022.069
|
29 |
Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
doi: 10.1149/1.2779605
|
30 |
Viswanathan R. Advances in materials technology for fossil power plants [M]. marco island, florida, USA: ASM International, 2008
|
31 |
Dong Z Q, Liu Z, Li M, et al. Effect of ultrasonic impact peening on the corrosion of ferritic-martensitic steels in supercritical water [J]. J. Nucl. Mater., 2015, 457: 266
doi: 10.1016/j.jnucmat.2014.11.028
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|