|
|
共晶高熵合金高温腐蚀的研究进展 |
李开洋1, 翟蕴龙1, 胡新宇1, 吴宏2, 刘彬2, 邢少华3, 侯健3, 张繁3, 张乃强1( ) |
1.华北电力大学能源动力与机械工程学院 北京 102206 2.中南大学粉末冶金研究院 长沙 410083 3.中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护全国重点实验室 青岛 266237 |
|
Research Progress on High Temperature Corrosion of Eutectic High Entropy Alloys |
LI Kaiyang1, ZHAI Yunlong1, HU Xinyu1, WU Hong2, LIU Bin2, XING Shaohua3, HOU Jian3, ZHANG Fan3, ZHANG Naiqiang1( ) |
1. College of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China 2. School of Powder Metallurgy Research Institute, Central South University, Changsha 410083, China 3. National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China |
引用本文:
李开洋, 翟蕴龙, 胡新宇, 吴宏, 刘彬, 邢少华, 侯健, 张繁, 张乃强. 共晶高熵合金高温腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
Kaiyang LI,
Yunlong ZHAI,
Xinyu HU,
Hong WU,
Bin LIU,
Shaohua XING,
Jian HOU,
Fan ZHANG,
Naiqiang ZHANG.
Research Progress on High Temperature Corrosion of Eutectic High Entropy Alloys[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1377-1388.
1 |
Zhu M, Zhao B Z, Yuan Y F, et al. Effect of annealing time on microstructure and corrosion behavior of CoCrFeMnNi high-entropy alloy in alkaline soil simulation solution [J]. Corros. Commun., 2021, 3: 45
|
2 |
Qiu S H, Xiang H M, Dai F Z, et al. Preparation and molten salts corrosion behavior of high-entropy (Ca,Sr,Ba)TMO3 (TM= Zr, Hf and Ta): promising protecting materials of reference electrode for metal smelting through fused salts electrolysis [J]. Corros. Commun., 2021, 3: 10
|
3 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
4 |
Wang K, Li C P, Lu J L, et al. Cavitation resistance of NiCoCrFeNb0.45 eutectic high entropy alloy for hydraulic machinery [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1079
|
4 |
(王 凯, 李晨沛, 卢金玲 等. NiCoCrFeNb0.45共晶高熵合金在水力机械中的抗空蚀性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1079)
|
5 |
Patel K, Hasannaeimi V, Sadeghilaridjani M, et al. Molten salt corrosion behavior of dual-phase high entropy alloy for concentrating solar power systems [J]. Entropy, 2023, 25: 296
|
6 |
Li K Y, Zhai Y L, Lai M J, et al. Corrosion of eutectic high-entropy alloys: a review [J]. Crystals, 2023, 13: 1231
|
7 |
Hasannaeimi V, Mukherjee S. Galvanic corrosion in a eutectic high entropy alloy [J]. J. Electroanal. Chem., 2019, 848: 113331
|
8 |
Shafiei A, Rajabi S. A cobalt-rich eutectic high-entropy alloy in the system Al-Co-Cr-Fe-Ni [J]. Appl. Phys., 2019, 125A: 783
|
9 |
Wang W R, Wang W L, Yeh J W. Phases, microstructure and mechanical properties of Al x CoCrFeNi high-entropy alloys at elevated temperatures [J]. J. Alloy. Compd., 2014, 589: 143
|
10 |
Wu H, Xie J, Yang H Y, et al. Comparative study of mechanical and corrosion behaviors of cost-effective AlCrFeNi high entropy alloys [J]. J. Mater. Eng. Perform., 2022, 31: 4472
|
11 |
Jiao W N, Lu Y P, Cao Z Q, et al. Progress and prospect of eutectic high enropy alloys [J]. Spec. Cast. Nonferrous Alloys, 2022, 42: 265
|
11 |
(焦文娜, 卢一平, 曹志强 等. 共晶高熵合金的研究进展及展望 [J]. 特种铸造及有色合金, 2022, 42: 265)
doi: 10.15980/j.tzzz.2022.03.001
|
12 |
Gao J Y, Liu F G, Liu L X, et al. Effect of TiB2 content on microstructure and mechanical properties of GH3536 superalloy formed by laser solid forming [J]. Mater. Today Commun., 2023, 37: 107168
|
13 |
Zheng Y S, Liu F G, Gao J Y, et al. Effect of different heat input on the microstructure and mechanical properties of laser cladding repaired 300M steel [J]. J. Mater. Res. Technol., 2023, 22: 556
|
14 |
Ren Y J, Liu X Y, Wang H, et al. Unraveling the inherent anisotropic properties of in situ alloyed copper-modified titanium alloys produced by laser powder bed fusion [J]. J. Alloy. Compd., 2023, 966: 171323
|
15 |
Guo S, Ng C, Liu C T. Anomalous solidification microstructures in Co-free Al x CrCuFeNi2 high-entropy alloys [J]. J. Alloy. Compd., 2013, 557: 77
|
16 |
Vrtnik S, Guo S, Sheikh S, et al. Magnetism of CoCrFeNiZr x eutectic high-entropy alloys [J]. Intermetallics, 2018, 93: 122
|
17 |
Huo W Y, Zhou H, Fang F, et al. Microstructure and properties of novel CoCrFeNiTa x eutectic high-entropy alloys [J]. J. Alloy. Compd., 2018, 735: 897
|
18 |
Dong Y, Lu Y P, Kong J R, et al. Microstructure and mechanical properties of multi-component AlCrFeNiMo x high-entropy alloys [J]. J. Alloy. Compd., 2013, 573: 96
|
19 |
Rogal Ł, Morgiel J, Świątek Z, et al. Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy [J]. Mater. Sci. Eng., 2016, 651A: 590
|
20 |
Jin X, Zhou Y, Zhang L, et al. A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration [J]. Mater. Des., 2018, 143: 49
|
21 |
Jiang L, Cao Z Q, Jie J C, et al. Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNi x VMo y high entropy alloys [J]. J. Alloy. Compd., 2015, 649: 585
|
22 |
Huang S R, Wu H, Zhu H G. Research progress on eutectic high entropy alloys [J]. Mater. Rep., 2020, 34: 17077
|
22 |
(黄思睿, 伍 昊, 朱和国. 共晶高熵合金的研究进展 [J]. 材料导报, 2020, 34: 17077)
|
23 |
Sun Y H, Han L N, Gao R Y, et al. Research progress of as-cast eutectic high-entropy alloys [J]. Nonferrous Met. Sci. Eng., 2022, 13(1): 27
|
23 |
(孙元昊, 韩露娜, 高睿盈 等. 铸态共晶高熵合金的研究进展 [J]. 有色金属科学与工程, 2022, 13(1): 27)
|
24 |
Chen X H, Xie W Y, Zhu J, et al. Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Intermetallics, 2021, 128: 107024
|
25 |
Dong Y, Yao Z Q, Huang X, et al. Microstructure and mechanical properties of AlCoxCrFeNi3 - x eutectic high-entropy-alloy system [J]. J. Alloy. Compd., 2020, 823: 153886
|
26 |
Xiang C, Wang J Z, Fu H M, et al. Corrosion behavior of several high-entropy alloys in high temperature high pressure water [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 107
|
26 |
(向 超, 王家贞, 付华萌 等. 几种高熵合金在核电高温高压水中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2016, 36: 107)
|
27 |
Liu Z H, Liu G M, He S F, et al. High temperature corrosion behavior of F22 base metal and weld in simulated coastal atmosphere [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 594
|
27 |
(柳志浩, 刘光明, 何思凡 等. F22母材与焊缝在模拟沿海空气中的高温腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 594)
doi: 10.11902/1005.4537.2022.182
|
28 |
Wang B H, Xiao B, Pan P Y, et al. Research progress on corrosion of metal interconnector for solid oxide fuel cells [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 6
|
28 |
(王碧辉, 肖 博, 潘佩媛 等. 固体氧化物燃料电池金属连接体腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 6)
doi: 10.11902/1005.4537.2022.049
|
29 |
Saunders S R J, Monteiro M, Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: a review [J]. Prog. Mater. Sci., 2008, 53: 775
|
30 |
Ren Y, Zhang X T, Gai X, et al. High temperature oxidation behavior of quaternary (Cr2/3Ti1/3)3AlC2 MAX ceramic in air and steam [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1284
|
30 |
(任 岩, 张鑫涛, 盖 欣 等. 四元MAX相(Cr2/3Ti1/3)3AlC2在高温空气以及水蒸气气氛中的氧化行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1284)
|
31 |
Li K Y, Zhu Z L, Xiao B, et al. State of the art overview material degradation in high-temperature supercritical CO2 environments [J]. Prog. Mater. Sci., 2023, 136: 101107
|
32 |
Li K Y, Zeng Y M. Corrosion of heat exchanger materials in co-combustion thermal power plants [J]. Renew. Sust. Energy Rev., 2022, 161: 112328
|
33 |
Han R Z, Jia J W, Li Y, et al. Corrosion behavior of three super austenitic stainless steels in a molten salts mixture at 650-750℃ [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 421
|
33 |
(韩瑞珠, 贾建文, 李阳 等. 超级奥氏体不锈钢的热腐蚀行为及机理研究 [J]. 中国腐蚀与防护学报, 2023, 43: 421)
doi: 10.11902/1005.4537.2022.115
|
34 |
Sun H, Su X Z, Zhang Peng, et al. Research status and progress of molten salts corrosion for concentrated solar thermal power [J]. Corros. Sci. Prot. Technol., 2017, 29: 282
|
34 |
(孙 华, 苏兴治, 张 鹏 等. 聚焦太阳能热发电用熔盐腐蚀研究现状与展望 [J]. 腐蚀科学与防护技术, 2017, 29: 282)
|
35 |
Birks N, Meier G H, Pettit F S. Introduction to the High-Temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
|
36 |
Anne B R, Shaik S, Tanaka M, et al. A crucial review on recent updates of oxidation behavior in high entropy alloys [J]. SN Appl. Sci., 2021, 3: 366
|
37 |
Yang X M, An Z B, Chen Y H. Review and perspective on oxidation resistance of high-entropy alloys [J]. Mater. Rep., 2019, 33: 348
|
37 |
(杨晓萌, 安子冰, 陈艳辉. 高熵合金抗氧化性能研究现状及展望 [J]. 材料导报, 2019, 33: 348)
|
38 |
Veselkov S, Samoilova O, Shaburova N, et al. High-temperature oxidation of high-entropic alloys: a review [J]. Materials, 2021, 14: 2595
|
39 |
Saha M. Deciphering the role of Al2O3 formed during isothermal oxidation in a dual-phase AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. J. Exp. Nanosci., 2020, 7: 68
|
40 |
Vo T D, Tran B, Tieu A K, et al. Effects of oxidation on friction and wear properties of eutectic high-entropy alloy AlCoCrFeNi2.1 [J]. Tribol. Int., 2021, 160: 107017
|
41 |
Jadhav M, Singh S, Srivastava M, et al. Effect of minute element addition on the oxidation resistance of FeCoCrNiAl and FeCoCrNi2Al high entropy alloy [J]. Adv. Powder Technol., 2022, 33: 103410
|
42 |
Kumar T S, Sourav A, Murty B S, et al. Role of Al and Cr on cyclic oxidation behavior of AlCoCrFeNi2 high entropy alloy [J]. J. Alloy. Compd., 2022, 919: 165820
|
43 |
Lu J, Zhang H, Chen Y, et al. Y-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation resistance and structure stability at 1000oC and 1100°C [J]. Corros. Sci., 2021, 180: 109191
|
44 |
Lu J, Zhang H, Li L, et al. Y-Hf co-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation and spallation resistance under thermal cycling conditions at 1100oC and 1200oC [J]. Corros. Sci., 2021, 187: 109515
|
45 |
Nong Z S, Lei Y N, Zhu J C. Wear and oxidation resistances of AlCrFeNiTi-based high entropy alloys [J]. Intermetallics, 2018, 101: 144
|
46 |
Peng Z, Sun J, Luan H W, et al. Effect of Mo on the high temperature oxidation behavior of Al19Fe20- x Co20- x Ni41Mo2 x high entropy alloys [J]. Intermetallics, 2023, 155: 107845
|
47 |
Liu Y Y, Chen Z, Chen Y Z, et al. Effect of Al content on high temperature oxidation resistance of Al x CoCrCuFeNi high entropy alloys (x = 0, 0. 5, 1, 1. 5, 2) [J]. Vacuum, 2019, 169: 108837
|
48 |
Ma M Y, Han A H, Zhang Z J, et al. The role of Si on microstructure and high-temperature oxidation of CoCr2FeNb0.5Ni high-entropy alloy coating [J]. Corros. Sci., 2021, 185: 109417
|
49 |
Li Z, Wang L, Wang B B, et al. Oxidation behavior of Ti-Nb-Mo-Al-Si x refractory high entropy alloy at 1000oC [J]. Corros. Sci., 2022, 206: 110504
|
50 |
Yurchenko N, Panina E, Zherebtsov S, et al. Oxidation behaviour of eutectic refractory high-entropy alloys at 800-1100oC [J]. Corros. Sci., 2022, 205: 110464
|
51 |
Zhang G M, Long Y, Chen J X, et al. Oxidation behavior of Y0.1-doped FeCoNiAlCrB high-entropy alloy [J]. Corros. Sci., 2022, 209: 110804
|
52 |
Li L J, Wang L, Liang Z D, et al. Effects of Ni and Cr on the high-temperature oxidation behavior and mechanisms of Co- and CoNi-base superalloys [J]. Mater. Des., 2022, 224: 111291
|
53 |
Xu W G, Li Y J, Qu S S, et al. High temperature oxidation behaviour of polycrystalline and single crystal Ta stabilized γ'-strengthened Co-Ni-Al-Ta-Cr alloys [J]. Corros. Sci., 2023, 225: 111554
|
54 |
Kim J H, Kim D I, Suwas S, et al. Grain-size effects on the high-temperature oxidation of modified 304 austenitic stainless steel [J]. Oxid. Met., 2012, 79: 239
|
55 |
Wang R, Straszheim M J, Rapp R A. A high-temperature oxidation-resistant Fe-Mn-Al-Si alloy [J]. Oxid. Met., 1984, 21: 71
|
56 |
Zheng T, Han J T. High temperature oxidation behavior of SUS310S austenitic stainless steel [J]. Adv. Mat. Res., 2014, 941-944: 212
|
57 |
Jin Q M, Li J, Xu Y L, et al. High-temperature oxidation of duplex stainless steels S32101 and S32304 in air and simulated industrial reheating atmosphere [J]. Corros. Sci., 2010, 52: 2846
|
58 |
Gao S, He B, Zhou L Z, et al. Effects of Ta on the high temperature oxidation behavior of IN617 alloy in air [J]. Corros. Sci., 2020, 170: 108682
|
59 |
Rashidi S, Choi J P, Stevenson J W, et al. High temperature oxidation behavior of aluminized Haynes 230 [J]. Corros. Sci., 2020, 174: 108835
|
60 |
Xi A Y, Zhuo L C, Shao H, et al. Oxidation kinetics and microstructure evolution of air oxidation behavior of TC18 alloy [J]. Vacuum, 2022, 204: 111332
|
61 |
Teeter L, Adam B, Wood T, et al. Comparison of the corrosion of materials in supercritical carbon dioxide, air, and argon environments [J]. Corros. Sci., 2021, 192: 109752
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|