Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1377-1388     CSTR: 32134.14.1005.4537.2024.005      DOI: 10.11902/1005.4537.2024.005
  综合评述 本期目录 | 过刊浏览 |
共晶高熵合金高温腐蚀的研究进展
李开洋1, 翟蕴龙1, 胡新宇1, 吴宏2, 刘彬2, 邢少华3, 侯健3, 张繁3, 张乃强1()
1.华北电力大学能源动力与机械工程学院 北京 102206
2.中南大学粉末冶金研究院 长沙 410083
3.中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护全国重点实验室 青岛 266237
Research Progress on High Temperature Corrosion of Eutectic High Entropy Alloys
LI Kaiyang1, ZHAI Yunlong1, HU Xinyu1, WU Hong2, LIU Bin2, XING Shaohua3, HOU Jian3, ZHANG Fan3, ZHANG Naiqiang1()
1. College of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
2. School of Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
3. National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
引用本文:

李开洋, 翟蕴龙, 胡新宇, 吴宏, 刘彬, 邢少华, 侯健, 张繁, 张乃强. 共晶高熵合金高温腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
Kaiyang LI, Yunlong ZHAI, Xinyu HU, Hong WU, Bin LIU, Shaohua XING, Jian HOU, Fan ZHANG, Naiqiang ZHANG. Research Progress on High Temperature Corrosion of Eutectic High Entropy Alloys[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1377-1388.

全文: PDF(6084 KB)   HTML
摘要: 

共晶高熵合金由基体相和强化相交替组成,因兼具共晶与高熵的优点而表现出极为优异的力学性能,有望突破传统合金的强度-塑性兼容极限,在工程领域得到广阔应用。然而,在服役过程中,共晶高熵合金的双相结构可能会导致氧化膜异质结构,对其抗腐蚀性能产生影响。但相关影响机制并不明确,影响了其在高温环境中的应用。本文系统分析了不同体系共晶高熵合金的高温氧化行为,梳理了温度、氧化时间、合金元素等因素对腐蚀过程的影响,总结了高温氧化机理,比较了共晶高熵合金与传统合金的抗氧化性能,指出了未来的研究方向,为共晶高熵合金的理论研究和实际应用提供了基础和指导。

关键词 共晶高熵合金高温氧化扩散双相氧化速率    
Abstract

Eutectic high entropy alloy (EHEA) is made up of alternatively ranged matrix and strengthening phases. The combination of eutectic and high entropy features endows EHEA extremely excellent mechanical properties, which may break the limit for strength-ductility compatibility and show a broad application prospects in various engineering fields. However, during the real service, the dual-phase structure of EHEA may result in a heterogeneous oxide scale, thus affecting its corrosion performance. The unknown effect of such heterogeneity affects the further application in high temperature application. Therefore, this study systematically analyzes the high-temperature oxidation behavior of different EHEAs, identify the factors (temperature, oxidation time, alloying elements) that affects corrosion, summarizes the high-temperature oxidation mechanism, compares the oxidation resistance between EHEA and conventional alloys and points out the future research direction, all of which may provide a reference for the future study and practical application of EHEA.

Key wordseutectic high entropy alloy    high temperature oxidation    diffusion    dual phase    oxidation rate
收稿日期: 2024-01-02      32134.14.1005.4537.2024.005
ZTFLH:  TG171  
基金资助:北京市自然科学基金青年基金(2244104);技术基础科研计划项目
通讯作者: 张乃强,E-mail: zhnq@ncepu.edu.cn,研究方向为金属高温腐蚀防护
Corresponding author: ZHANG Naiqiang, E-mail: zhnq@ncepu.edu.cn
作者简介: 李开洋,男,1989年生,博士,讲师
图1  共晶高熵合金AlCoCrFeNi2.1的组织与相分析[5]
图2  共晶高熵合金研究路线及添加元素的作用
图3  CoCr2FeNb0.5NiSi0.2在800℃下N2-44%CO2-6%H2O气氛中的氧化机理图[48]
图4  TiNbMoAlSi共晶高熵合金在1000℃的氧化机理示意图[49]
MaterialPreparing MethodPhaseToCthCorrosion productDirect mass change mg·cm-2EnvironmentRef.
AlCoCrFeNi2.1CastingB2 + L12950500Fe2O3 + Al2O351air[39]
1000500Fe2O3 + Al2O3133
Al0CoCrCuFeNiArcFCC1000100Cr2O3 + spinel + (Co, Ni, Cu)O1.32air[47]
Al0.5CoCrCuFeNimeltingAl2O3 + Cr2O3 + spinel +(Co, Ni, Cu)O0.73
Al1CoCrCuFeNiFCC +Al2O3 + Cr2O3 + spinel +(Co, Ni, Cu)O0.33
BCC
Al1.5CoCrCuFeNiAl2O3 + Cr2O3 + spinel +(Co, Ni, Cu)O0.25
Al2CoCrCuFeNiAl2O3 + Cr2O3 + spinel +(Co, Ni, Cu)O0.235
FeCoCrNiAlMAS andFCC +1050100Al2O30.38air[49]
FeCoCrNiAlTi0.1hotBCC0.37
FeCoCrNiAlTi0.1Si0.1pressing0.34
FeCoCrNi2Al0.4
FeCoCrNi2AlTi0.10.36
FeCoCrNi2AlTi0.1Si0.10.31
MCrAlY0.63
Al19Fe20Co20Ni41ArcB2 + FCC800100spinel1 + spinel24.25air[46]
Al19Fe19Co19Ni41Mo2meltingspinel2 + spinel31.95
Al19Fe18Co18Ni41Mo4spinel2 + spinel3 + CoO1.3
AlCoCrFeNi2.1Arc meltingBCC +5000.17Cr2O3 + Al2O3-air[40]
+ chillFCC600-
casting700-
800-
900-
AlCoCrFeNi2.1Arc meltingFCC(L12) + BCC(B2)45024CrCl2 + AlCl220Molten NaCl-KCl-MgCl2[5]
65039
TiNbMo0.5Al0.225Si0.1Vacuum

BCC + γ-

(Nb, Ti)5Si3

100060TiO2 + TiNb2O7 + SiO268.5air[49]
TiNbMo0.5Al0.225Si0.25melting110.93
TiNbMo0.5Al0.225S0.4

Si+BCC+

γ-Nb,Ti)5Si3

TiO2 + TiNb2O7 + Al2O375.71
TiNbMo0.5Al0.225Si0.55

BCC + β-

(Nb,Ti)5Si3

102.64
FeCoNiAlCrBBallBCC +10006spinel + α-Al2O3 + Cr2O3-air[51]
milling +borides48-
FeCoNiAlCrBY0.1SPS6-
48-
Al23Cr20Nb15Ti32Zr10ArcB2 +800100Al2O3 + CrO2 +8air[50]
meltingC14 Laves900100Ti0.4Al0.3Nb0.3O2 + TiO2 +22
100010Zr0.5Al0.5O220
Al28Cr20Nb15Ti27Zr10800100-59
900100-62
100010-15
Al33Cr20Nb15Ti22Zr10800100-18.5
900100-38
100010-29
AlCoCrFeNi2Arc meltingFCC + BCC105055Al2O3 + Cr2O3 + Fe2O3· AB2O4-0.07air[42]
Al1.5CoCrFeNi2FCC + B2(A = Fe/Co/Ni, B = Al/Cr)0.36
AlCoCr1.5FeNi2FCC + BCC0.29
Al1.5CoCr1.5FeNi2BCC/B20.56
CoCr2FeNb0.5NiLaser claddingFCC + Laves800320Cr2O3 + Cr3O1.55N2-44CO2-6H2O gas[48]
CoCr2FeNb0.5NiSi0.21.34
AlCrFeNiTiArc meltingBCC1 + BCC2 + Laves900100TiO2 + Al2O3 + Mn2O3 + complex1.31air[45]
Fe-O (Fe2TiO5, Mn(FeTi))
AlCrFeNiTiMn0.5BCC11.66
BCC2 +
Laves
AlCoCrFeNi2.1Arc meltingFCC (γ') + BCC (β)1000500Al2O3 + spinel-air[43]
1100Al2O3-
AlCoCrFeNi2.1Arc meltingL12 (γ') +11001008Al2O3-air[44]
B2 (β)1200-
NiCoCrAlYHf1100-
1200-
表1  不同体系共晶高熵合金的高温腐蚀总结
图5  多种共晶高熵合金以及Co基、Fe基、Ni基、Ti基合金在550~1100℃下静态空气中的氧化速率常数对比
1 Zhu M, Zhao B Z, Yuan Y F, et al. Effect of annealing time on microstructure and corrosion behavior of CoCrFeMnNi high-entropy alloy in alkaline soil simulation solution [J]. Corros. Commun., 2021, 3: 45
2 Qiu S H, Xiang H M, Dai F Z, et al. Preparation and molten salts corrosion behavior of high-entropy (Ca,Sr,Ba)TMO3 (TM= Zr, Hf and Ta): promising protecting materials of reference electrode for metal smelting through fused salts electrolysis [J]. Corros. Commun., 2021, 3: 10
3 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
4 Wang K, Li C P, Lu J L, et al. Cavitation resistance of NiCoCrFeNb0.45 eutectic high entropy alloy for hydraulic machinery [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1079
4 (王 凯, 李晨沛, 卢金玲 等. NiCoCrFeNb0.45共晶高熵合金在水力机械中的抗空蚀性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1079)
5 Patel K, Hasannaeimi V, Sadeghilaridjani M, et al. Molten salt corrosion behavior of dual-phase high entropy alloy for concentrating solar power systems [J]. Entropy, 2023, 25: 296
6 Li K Y, Zhai Y L, Lai M J, et al. Corrosion of eutectic high-entropy alloys: a review [J]. Crystals, 2023, 13: 1231
7 Hasannaeimi V, Mukherjee S. Galvanic corrosion in a eutectic high entropy alloy [J]. J. Electroanal. Chem., 2019, 848: 113331
8 Shafiei A, Rajabi S. A cobalt-rich eutectic high-entropy alloy in the system Al-Co-Cr-Fe-Ni [J]. Appl. Phys., 2019, 125A: 783
9 Wang W R, Wang W L, Yeh J W. Phases, microstructure and mechanical properties of Al x CoCrFeNi high-entropy alloys at elevated temperatures [J]. J. Alloy. Compd., 2014, 589: 143
10 Wu H, Xie J, Yang H Y, et al. Comparative study of mechanical and corrosion behaviors of cost-effective AlCrFeNi high entropy alloys [J]. J. Mater. Eng. Perform., 2022, 31: 4472
11 Jiao W N, Lu Y P, Cao Z Q, et al. Progress and prospect of eutectic high enropy alloys [J]. Spec. Cast. Nonferrous Alloys, 2022, 42: 265
11 (焦文娜, 卢一平, 曹志强 等. 共晶高熵合金的研究进展及展望 [J]. 特种铸造及有色合金, 2022, 42: 265)
doi: 10.15980/j.tzzz.2022.03.001
12 Gao J Y, Liu F G, Liu L X, et al. Effect of TiB2 content on microstructure and mechanical properties of GH3536 superalloy formed by laser solid forming [J]. Mater. Today Commun., 2023, 37: 107168
13 Zheng Y S, Liu F G, Gao J Y, et al. Effect of different heat input on the microstructure and mechanical properties of laser cladding repaired 300M steel [J]. J. Mater. Res. Technol., 2023, 22: 556
14 Ren Y J, Liu X Y, Wang H, et al. Unraveling the inherent anisotropic properties of in situ alloyed copper-modified titanium alloys produced by laser powder bed fusion [J]. J. Alloy. Compd., 2023, 966: 171323
15 Guo S, Ng C, Liu C T. Anomalous solidification microstructures in Co-free Al x CrCuFeNi2 high-entropy alloys [J]. J. Alloy. Compd., 2013, 557: 77
16 Vrtnik S, Guo S, Sheikh S, et al. Magnetism of CoCrFeNiZr x eutectic high-entropy alloys [J]. Intermetallics, 2018, 93: 122
17 Huo W Y, Zhou H, Fang F, et al. Microstructure and properties of novel CoCrFeNiTa x eutectic high-entropy alloys [J]. J. Alloy. Compd., 2018, 735: 897
18 Dong Y, Lu Y P, Kong J R, et al. Microstructure and mechanical properties of multi-component AlCrFeNiMo x high-entropy alloys [J]. J. Alloy. Compd., 2013, 573: 96
19 Rogal Ł, Morgiel J, Świątek Z, et al. Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy [J]. Mater. Sci. Eng., 2016, 651A: 590
20 Jin X, Zhou Y, Zhang L, et al. A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration [J]. Mater. Des., 2018, 143: 49
21 Jiang L, Cao Z Q, Jie J C, et al. Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNi x VMo y high entropy alloys [J]. J. Alloy. Compd., 2015, 649: 585
22 Huang S R, Wu H, Zhu H G. Research progress on eutectic high entropy alloys [J]. Mater. Rep., 2020, 34: 17077
22 (黄思睿, 伍 昊, 朱和国. 共晶高熵合金的研究进展 [J]. 材料导报, 2020, 34: 17077)
23 Sun Y H, Han L N, Gao R Y, et al. Research progress of as-cast eutectic high-entropy alloys [J]. Nonferrous Met. Sci. Eng., 2022, 13(1): 27
23 (孙元昊, 韩露娜, 高睿盈 等. 铸态共晶高熵合金的研究进展 [J]. 有色金属科学与工程, 2022, 13(1): 27)
24 Chen X H, Xie W Y, Zhu J, et al. Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Intermetallics, 2021, 128: 107024
25 Dong Y, Yao Z Q, Huang X, et al. Microstructure and mechanical properties of AlCoxCrFeNi3 - x eutectic high-entropy-alloy system [J]. J. Alloy. Compd., 2020, 823: 153886
26 Xiang C, Wang J Z, Fu H M, et al. Corrosion behavior of several high-entropy alloys in high temperature high pressure water [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 107
26 (向 超, 王家贞, 付华萌 等. 几种高熵合金在核电高温高压水中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2016, 36: 107)
27 Liu Z H, Liu G M, He S F, et al. High temperature corrosion behavior of F22 base metal and weld in simulated coastal atmosphere [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 594
27 (柳志浩, 刘光明, 何思凡 等. F22母材与焊缝在模拟沿海空气中的高温腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 594)
doi: 10.11902/1005.4537.2022.182
28 Wang B H, Xiao B, Pan P Y, et al. Research progress on corrosion of metal interconnector for solid oxide fuel cells [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 6
28 (王碧辉, 肖 博, 潘佩媛 等. 固体氧化物燃料电池金属连接体腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 6)
doi: 10.11902/1005.4537.2022.049
29 Saunders S R J, Monteiro M, Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: a review [J]. Prog. Mater. Sci., 2008, 53: 775
30 Ren Y, Zhang X T, Gai X, et al. High temperature oxidation behavior of quaternary (Cr2/3Ti1/3)3AlC2 MAX ceramic in air and steam [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1284
30 (任 岩, 张鑫涛, 盖 欣 等. 四元MAX相(Cr2/3Ti1/3)3AlC2在高温空气以及水蒸气气氛中的氧化行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1284)
31 Li K Y, Zhu Z L, Xiao B, et al. State of the art overview material degradation in high-temperature supercritical CO2 environments [J]. Prog. Mater. Sci., 2023, 136: 101107
32 Li K Y, Zeng Y M. Corrosion of heat exchanger materials in co-combustion thermal power plants [J]. Renew. Sust. Energy Rev., 2022, 161: 112328
33 Han R Z, Jia J W, Li Y, et al. Corrosion behavior of three super austenitic stainless steels in a molten salts mixture at 650-750℃ [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 421
33 (韩瑞珠, 贾建文, 李阳 等. 超级奥氏体不锈钢的热腐蚀行为及机理研究 [J]. 中国腐蚀与防护学报, 2023, 43: 421)
doi: 10.11902/1005.4537.2022.115
34 Sun H, Su X Z, Zhang Peng, et al. Research status and progress of molten salts corrosion for concentrated solar thermal power [J]. Corros. Sci. Prot. Technol., 2017, 29: 282
34 (孙 华, 苏兴治, 张 鹏 等. 聚焦太阳能热发电用熔盐腐蚀研究现状与展望 [J]. 腐蚀科学与防护技术, 2017, 29: 282)
35 Birks N, Meier G H, Pettit F S. Introduction to the High-Temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
36 Anne B R, Shaik S, Tanaka M, et al. A crucial review on recent updates of oxidation behavior in high entropy alloys [J]. SN Appl. Sci., 2021, 3: 366
37 Yang X M, An Z B, Chen Y H. Review and perspective on oxidation resistance of high-entropy alloys [J]. Mater. Rep., 2019, 33: 348
37 (杨晓萌, 安子冰, 陈艳辉. 高熵合金抗氧化性能研究现状及展望 [J]. 材料导报, 2019, 33: 348)
38 Veselkov S, Samoilova O, Shaburova N, et al. High-temperature oxidation of high-entropic alloys: a review [J]. Materials, 2021, 14: 2595
39 Saha M. Deciphering the role of Al2O3 formed during isothermal oxidation in a dual-phase AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. J. Exp. Nanosci., 2020, 7: 68
40 Vo T D, Tran B, Tieu A K, et al. Effects of oxidation on friction and wear properties of eutectic high-entropy alloy AlCoCrFeNi2.1 [J]. Tribol. Int., 2021, 160: 107017
41 Jadhav M, Singh S, Srivastava M, et al. Effect of minute element addition on the oxidation resistance of FeCoCrNiAl and FeCoCrNi2Al high entropy alloy [J]. Adv. Powder Technol., 2022, 33: 103410
42 Kumar T S, Sourav A, Murty B S, et al. Role of Al and Cr on cyclic oxidation behavior of AlCoCrFeNi2 high entropy alloy [J]. J. Alloy. Compd., 2022, 919: 165820
43 Lu J, Zhang H, Chen Y, et al. Y-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation resistance and structure stability at 1000oC and 1100°C [J]. Corros. Sci., 2021, 180: 109191
44 Lu J, Zhang H, Li L, et al. Y-Hf co-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation and spallation resistance under thermal cycling conditions at 1100oC and 1200oC [J]. Corros. Sci., 2021, 187: 109515
45 Nong Z S, Lei Y N, Zhu J C. Wear and oxidation resistances of AlCrFeNiTi-based high entropy alloys [J]. Intermetallics, 2018, 101: 144
46 Peng Z, Sun J, Luan H W, et al. Effect of Mo on the high temperature oxidation behavior of Al19Fe20- x Co20- x Ni41Mo2 x high entropy alloys [J]. Intermetallics, 2023, 155: 107845
47 Liu Y Y, Chen Z, Chen Y Z, et al. Effect of Al content on high temperature oxidation resistance of Al x CoCrCuFeNi high entropy alloys (x = 0, 0. 5, 1, 1. 5, 2) [J]. Vacuum, 2019, 169: 108837
48 Ma M Y, Han A H, Zhang Z J, et al. The role of Si on microstructure and high-temperature oxidation of CoCr2FeNb0.5Ni high-entropy alloy coating [J]. Corros. Sci., 2021, 185: 109417
49 Li Z, Wang L, Wang B B, et al. Oxidation behavior of Ti-Nb-Mo-Al-Si x refractory high entropy alloy at 1000oC [J]. Corros. Sci., 2022, 206: 110504
50 Yurchenko N, Panina E, Zherebtsov S, et al. Oxidation behaviour of eutectic refractory high-entropy alloys at 800-1100oC [J]. Corros. Sci., 2022, 205: 110464
51 Zhang G M, Long Y, Chen J X, et al. Oxidation behavior of Y0.1-doped FeCoNiAlCrB high-entropy alloy [J]. Corros. Sci., 2022, 209: 110804
52 Li L J, Wang L, Liang Z D, et al. Effects of Ni and Cr on the high-temperature oxidation behavior and mechanisms of Co- and CoNi-base superalloys [J]. Mater. Des., 2022, 224: 111291
53 Xu W G, Li Y J, Qu S S, et al. High temperature oxidation behaviour of polycrystalline and single crystal Ta stabilized γ'-strengthened Co-Ni-Al-Ta-Cr alloys [J]. Corros. Sci., 2023, 225: 111554
54 Kim J H, Kim D I, Suwas S, et al. Grain-size effects on the high-temperature oxidation of modified 304 austenitic stainless steel [J]. Oxid. Met., 2012, 79: 239
55 Wang R, Straszheim M J, Rapp R A. A high-temperature oxidation-resistant Fe-Mn-Al-Si alloy [J]. Oxid. Met., 1984, 21: 71
56 Zheng T, Han J T. High temperature oxidation behavior of SUS310S austenitic stainless steel [J]. Adv. Mat. Res., 2014, 941-944: 212
57 Jin Q M, Li J, Xu Y L, et al. High-temperature oxidation of duplex stainless steels S32101 and S32304 in air and simulated industrial reheating atmosphere [J]. Corros. Sci., 2010, 52: 2846
58 Gao S, He B, Zhou L Z, et al. Effects of Ta on the high temperature oxidation behavior of IN617 alloy in air [J]. Corros. Sci., 2020, 170: 108682
59 Rashidi S, Choi J P, Stevenson J W, et al. High temperature oxidation behavior of aluminized Haynes 230 [J]. Corros. Sci., 2020, 174: 108835
60 Xi A Y, Zhuo L C, Shao H, et al. Oxidation kinetics and microstructure evolution of air oxidation behavior of TC18 alloy [J]. Vacuum, 2022, 204: 111332
61 Teeter L, Adam B, Wood T, et al. Comparison of the corrosion of materials in supercritical carbon dioxide, air, and argon environments [J]. Corros. Sci., 2021, 192: 109752
[1] 吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[2] 程学雨, 叶桓, 郭程皓, 卢立新, 李伟哲. 苯骈三氮唑与苯甲酸钠在气相防锈膜中扩散机理的分子动力学模拟研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1323-1331.
[3] 李佳恒, 钱伟, 朱晶晶, 蔡杰, 花银群. 激光冲击强化对镍基单晶高温合金微观组织和抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1295-1304.
[4] 吴铭, 任延杰, 马灼春, 张思甜, 陈荐, 牛焱. F55双相不锈钢在800~1000℃纯氧气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[5] 张帮彦, 吴洪斌, 胡雪刚, 董家键, 郑世杰, 尹蔚蔚, 张方宇, 田礼熙, 刘光明. 机械合金化+放电等子烧结FeCrAl/La2Zr2O7 复合材料高温氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 965-971.
[6] 朱慧文, 郑黎, 张昊, 于宝义, 崔志博. BeWE43镁合金高温氧化行为及阻燃性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[7] 冯抗抗, 任延杰, 吕云蕾, 周梦妮, 陈荐, 牛焱. Si含量对四元Fe-20Ni-20Cr-ySi合金在900℃下氧化行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 100-106.
[8] 王爽, 王资兴, 程晓农, 罗锐. 稀土La对钴基高温合金GH51881100℃下空气中氧化行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 221-228.
[9] 任岩, 张鑫涛, 盖欣, 徐敬军, 张伟, 陈勇, 李美栓. 四元MAX(Cr2/3Ti1/3)3AlC2 在高温空气以及水蒸气气氛中的氧化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[10] 於琛钧, 张天翼, 张乃强, 朱忠亮. 组织老化对P92钢在超临界水中氧化行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[11] 王凯, 李晨沛, 卢金玲, 王振江, 王维. NiCoCrFeNb0.45 共晶高熵合金在水力机械中的抗空蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1079-1086.
[12] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[13] 刘姝妤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 段海涛, 夏思瑶, 夏春怀. K444合金表面CVD铝化物涂层的高温氧化和固态Na2SO4诱导的空气腐蚀[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[14] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[15] 彭浩, 程晓英, 李晓亮, 王兆丰, 蔡贞祥. 高强度低合金钢中V和Nb对氢陷阱的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.