Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 972-978     CSTR: 32134.14.1005.4537.2023.310      DOI: 10.11902/1005.4537.2023.310
  研究报告 本期目录 | 过刊浏览 |
电泳沉积制备MnCo尖晶石涂层的高温长期稳定性研究
王碧辉, 刘聚, 崔志翔, 肖博, 杨天让, 张乃强()
华北电力大学能源动力与机械工程学院 北京 102206
Long-term Stability of MnCo Spinel Coatings Prepared by Electrophoretic Deposition at High Temperatures
WANG Bihui, LIU Ju, CUI Zhixiang, XIAO Bo, YANG Tianrang, ZHANG Naiqiang()
College of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
引用本文:

王碧辉, 刘聚, 崔志翔, 肖博, 杨天让, 张乃强. 电泳沉积制备MnCo尖晶石涂层的高温长期稳定性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 972-978.
Bihui WANG, Ju LIU, Zhixiang CUI, Bo XIAO, Tianrang YANG, Naiqiang ZHANG. Long-term Stability of MnCo Spinel Coatings Prepared by Electrophoretic Deposition at High Temperatures[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 972-978.

全文: PDF(8371 KB)   HTML
摘要: 

采用电泳沉积工艺在不同Cr含量钢表面制备了Mn1.5Co1.5O4尖晶石涂层,探究了温度对Mn1.5Co1.5O4/钢体系的长期稳定性和导电性能的影响。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和4线法电阻(ASR)测试对样品进行表征。结果表明,两步烧结法得到了相对致密性的涂层。在800℃氧化1000 h 后,Mn1.5Co1.5O4/钢的氧化速率约为(1~3) × 10-14 g2·cm-4·s-1,随着氧化温度的降低,氧化速率常数下降1~2个数量级。SUS430钢凭借自身较低Cr含量,在Mn1.5Co1.5O4/SUS430样品中形成了更薄的含Cr氧化层。同时,氧化过程中钢中Fe向外扩散促进涂层致密性,最终Mn1.5Co1.5O4/SUS430获得了比Mn1.5Co1.5O4/Crofer22H更低的ASR值。

关键词 固体氧化物燃料电池铁素体钢尖晶石涂层电泳沉积    
Abstract

Spinel coatings Mn1.5Co1.5O4 on steels SUS430 and Crofer22H were prepared via electrophoretic deposition, aiming to improve their high-temperature oxidation resistance and electrical conductivity as SOFC interconnector. Afterwards, their oxidation behavior at 700-800oC and electrical conductivity after oxidation were characterized by means of intermittent weighing method, X-ray diffraction (XRD), scanning electron microscope (SEM) and 4-wire electrical resistance tester (ASR). The result showed that relatively dense coatings may be acquired by two-step sintering. The oxidation rate of Mn1.5Co1.5O4/SUS430 oxidized at 800oC for 1000 h is about (1-3) × 10-14 g2·cm-4·s-1, and the oxidation rate constant decreases by 1-2 orders of magnitude as the temperature decreases. Mn1.5Co1.5O4/SUS430 formed a thinner Cr-containing oxide scale due to its own low Cr content, at the same time, the Fe diffused outward from the substrate steel during the oxidation process to further promote the coating densification. Ultimately, after high temperature oxidation, the Mn1.5Co1.5O4/SUS430 showed ASR values lower than those of the Mn1.5Co1.5O4/Crofer22H.

Key wordssolid oxide fuel cell    ferrite steel    spinel coating    electrophoretic deposition
收稿日期: 2023-09-27      32134.14.1005.4537.2023.310
ZTFLH:  TG172  
通讯作者: 张乃强,E-mail:zhnq@ncepu.edu.cn,研究方向为金属高温腐蚀行为
Corresponding author: ZHANG Naiqiang, E-mail: zhnq@ncepu.edu.cn
作者简介: 王碧辉,女,1994年生,博士生
SteelFeCrMnSiTiNbWLa
SUS430Bal.160.440.59----
Crofer22HBal.230.450.250.10.51.90.07
表1  SUS430钢和Crofer22H钢的标准化学成分 (mass fraction / %)
图1  涂层制备方法示意图以及烧结后表面和截面形貌
图2  Mn1.5Co1.5O4/SUS430和Mn1.5Co1.5O4/Crofer22H两种试样在不同温度下的氧化增重曲线
图3  Mn1.5Co1.5O4/SUS430和Mn1.5Co1.5O4/Crofer22H试样在不同温度下氧化200 h以及1000 h后的表面形貌和XRD谱
图4  Mn1.5Co1.5O4/SUS430和Mn1.5Co1.5O4/Crofer22H两种试样在不同温度下氧化1000 h后的截面形貌及元素分布图(图中黄线标记为含Cr氧化层厚度)
图5  Mn1.5Co1.5O4/钢在800℃氧化200 h以及1000 h后在不同温度下的面比电阻
图6  Mn1.5Co1.5O4/钢试样氧化过程中元素扩散示意图
[1] Vinchhi P, Khandla M, Chaudhary K, et al. Recent advances on electrolyte materials for SOFC: A review [J]. Inorg. Chem. Commun., 2023, 152: 110724
[2] Hassan M A, Mamat O B, Mehdi M. Review: Influence of alloy addition and spinel coatings on Cr-based metallic interconnects of solid oxide fuel cells [J]. Int. J. Hydrogen Energy, 2020, 45: 25191
[3] Fergus J W. Metallic interconnects for solid oxide fuel cells [J]. Mater. Sci. Eng., 2005, 397A: 271
[4] Zhu W Z, Deevi S C. Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance [J]. Mater. Res. Bull., 2003, 38: 957
[5] Fergus J W. Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells [J]. Int. J. Hydrogen Energy, 2007, 32: 3664
[6] Wu S J, Chen L, Liu J L, et al. Research progress of Mn-Co spinel coating in interconnect alloys of solid oxide fuel cells [J]. J. Ceram., 2022, 43: 733
[6] 吴诗静, 陈 霖, 刘佳乐 等. Mn-Co基尖晶石涂层在固体氧化物燃料电池连接体合金中的研究进展 [J]. 陶瓷学报, 2022, 43: 733
[7] Smeacetto F, De Miranda A, Polo S C, et al. Electrophoretic deposition of Mn1.5Co1.5O4 on metallic interconnect and interaction with glass-ceramic sealant for solid oxide fuel cells application [J]. J. Power Sources, 2015, 280: 379
[8] Wu J W, Gemmen R S, Manivannan A, et al. Investigation of Mn/Co coated T441 alloy as SOFC interconnect by on-cell tests [J]. Int. J. Hydrogen Energy, 2011, 36: 4525
[9] Molin S, Sabato A G, Bindi M, et al. Microstructural and electrical characterization of Mn-Co spinel protective coatings for solid oxide cell interconnects [J]. J. Eur. Ceram. Soc., 2017, 37: 4781
[10] Stanislowski M, Froitzheim J, Niewolak L, et al. Reduction of chromium vaporization from SOFC interconnectors by highly effective coatings [J]. J. Power Sources, 2007, 164: 578
[11] Talic B, Falk-Windisch H, Venkatachalam V, et al. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects [J]. J. Power Sources, 2017, 354: 57
[12] Hu Y Z, Su Y T, Li C X, et al. Dense Mn1.5Co1.5O4 coatings with excellent long-term stability and electrical performance under the SOFC cathode environment [J]. Appl. Surf. Sci., 2020, 499: 143726
[13] Bobruk M, Molin S, Chen M, et al. Sintering of MnCo2O4 coatings prepared by electrophoretic deposition [J]. Mater. Lett., 2018, 213: 394
[14] Tseng H P, Yung T Y, Liu C K, et al. Oxidation characteristics and electrical properties of La- or Ce-doped MnCo2O4 as protective layer on SUS441 for metallic interconnects in solid oxide fuel cells [J]. Int. J. Hydrogen Energy, 2020, 45: 12555
[15] Bordeneuve H, Tenailleau C, Guillemet-Fritsch S, et al. Structural variations and cation distributions in Mn3- x Co x O4 (0 ≤ x ≤ 3) dense ceramics using neutron diffraction data [J]. Solid State Sci., 2010, 12: 379
[16] Wang K L, Liu Y J, Fergus J W. Interactions between SOFC interconnect coating materials and chromia [J]. J. Am. Ceram. Soc., 2011, 94: 4490
[17] Jia C, Wang Y H, Molin S, et al. High temperature oxidation behavior of SUS430 SOFC interconnects with Mn-Co spinel coating in air [J]. J. Alloy. Compd., 2019, 787: 1327
[18] Zeng Y X, Wu J W, Baker A P, et al. Magnetron-sputtered Mn/Co(40:60) coating on ferritic stainless steel SUS430 for solid oxide fuel cell interconnect applications [J]. Int. J. Hydrogen Energy, 2014, 39: 16061
[19] Zanchi E, Ignaczak J, Molin S, et al. Electrophoretic co-deposition of Mn1.5Co1.5O4, Fe2O3 and CuO: Unravelling the effect of simultaneous addition of Cu and Fe on the microstructural, thermo-mechanical and corrosion properties of in-situ modified spinel coatings for solid oxide cell interconnects [J]. J. Eur. Ceram. Soc., 2022, 42: 3271
[20] Zanchi E, Sabato A G, Molin S, et al. Recent advances on spinel-based protective coatings for solid oxide cell metallic interconnects produced by electrophoretic deposition [J]. Mater. Lett., 2021, 286: 129229
[21] Young D J. High Temperature Oxidation and Corrosion of Metals [M]. Elsevier, 2008
[22] Wang B H, Li K Y, Liu J, et al. Achieving high-temperature corrosion resistance and conductivity of SUS430 by xCr-MnCo dual-structured coating [J]. Corros. Sci., 2023, 220: 111267
[23] Sabato A G, Molin S, Javed H, et al. In-situ Cu-doped MnCo-spinel coatings for solid oxide cell interconnects processed by electrophoretic deposition [J]. Ceram. Int., 2019, 45: 19148
doi: 10.1016/j.ceramint.2019.06.161
[24] Cheng F P, Sun J C. Fabrication of a double-layered Co-Mn-O spinel coating on stainless steel via the double glow plasma alloying process and preoxidation treatment as SOFC interconnect [J]. Int. J. Hydrogen Energy, 2019, 44: 18415
[25] Molin S, Jasinski P, Mikkelsen L, et al. Low temperature processed MnCo2O4 and MnCo1.8Fe0.2O4 as effective protective coatings for solid oxide fuel cell interconnects at 750 °C [J]. J. Power Sources, 2016, 336: 408
[26] Grünwald N, Sebold D, Sohn Y J, et al. Self-healing atmospheric plasma sprayed Mn1.0Co1.9Fe0.1O4 protective interconnector coatings for solid oxide fuel cells [J]. J. Power Sources, 2017, 363: 185
[27] Fang Y C, Wu C L, Duan X B, et al. High-temperature oxidation process analysis of MnCo2O4 coating on Fe–21Cr alloy [J]. Int. J. Hydrogen Energy, 2011, 36: 5611
[28] Horita T, Kishimoto H, Yamaji K, et al. Diffusion of oxygen in the scales of Fe–Cr alloy interconnects and oxide coating layer for solid oxide fuel cells [J]. Solid State Ion., 2008, 179: 2216
[29] Navrotsky A, Kleppa O J. The thermodynamics of cation distributions in simple spinels [J]. J. Inorg. Nucl. Chem., 1967, 29: 2701
[30] Liu Y J, Fergus J W, Cruz C D. Electrical properties, cation distributions, and thermal expansion of manganese cobalt chromite spinel oxides [J]. J. Am. Ceram. Soc., 2013, 96: 1841
[1] 王碧辉, 肖博, 潘佩媛, 刘聚, 张乃强. 固体氧化物燃料电池金属连接体腐蚀研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 6-12.
[2] 张辉,王安祺,武俊伟. 固体氧化物燃料电池金属连接体保护膜层研究进展[J]. 中国腐蚀与防护学报, 2012, 32(5): 357-363.
[3] 金光熙, 潘凤红,郎成,乔利杰. SOFC连接体用STS444/Y合金的高温导电性能研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 367-370.