Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 445-452     CSTR: 32134.14.1005.4537.2023.165      DOI: 10.11902/1005.4537.2023.165
  研究报告 本期目录 | 过刊浏览 |
纯铁在模拟汽油燃烧环境中的初期氧化行为研究
赖天1,2, 谢冬柏2(), 多树旺1, 洪昊3, 张豪1, 汤智杰1
1.江西科技师范大学 江西省材料表面工程重点实验室,南昌 330013
2.潍坊科技学院 山东省农机装备用材料工程高校特色实验室,寿光 262700
3.兰州理工大学 有色金属先进加工与再利用国家重点实验室,兰州 730050
Initial Oxidation Behavior of Pure Iron in a Simulated Combustion Environment Containing Gasoline
LAI Tian1,2, XIE Dongbai2(), DUO Shuwang1, HONG Hao3, ZHANG Hao1, TANG Zhijie1
1.Jiangxi Key Laboratory of Materials Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
2.University Featured Laboratory of Materials Engineering for Agricultural Machinery of Shandong Province, Weifang University of Science and Technology, Shouguang 262700, China
3.State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
引用本文:

赖天, 谢冬柏, 多树旺, 洪昊, 张豪, 汤智杰. 纯铁在模拟汽油燃烧环境中的初期氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 445-452.
Tian LAI, Dongbai XIE, Shuwang DUO, Hao HONG, Hao ZHANG, Zhijie TANG. Initial Oxidation Behavior of Pure Iron in a Simulated Combustion Environment Containing Gasoline[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 445-452.

全文: PDF(8911 KB)   HTML
摘要: 

使用正庚烷模拟汽油作为含助燃剂的火场现场环境,重点研究了纯铁随助燃剂量的增加其表面氧化产物的变化及其氧化行为特征。采用扫描电镜(SEM)、能谱仪(EDS)、原子力显微镜(AFM)和X射线光电子能谱(XPS)等分析手段对氧化产物形貌和成分进行分析。结果表明,正庚烷燃烧后,纯铁表面出现正庚烷高温裂解反应后生成的颗粒状无定型碳,且沉积碳含量与纯铁的表面温度和正庚烷含量密切相关,并易聚集在纯铁的缺陷和晶界区域。正庚烷助燃剂界面燃烧所形成的局部氧化性气氛会导致纯铁表面产生大量缺陷,进而促进表面氧化层的剥落。根据这些氧化特征有助于判断火场中是否有助燃剂成分存在。

关键词 火灾调查正庚烷助燃剂模拟燃烧氧化    
Abstract

To address the issue of low content of accelerant residues at the fire site due to combustion, volatilization and site contamination, which leads to difficulties in identification. In this study, n-heptane was used to simulate the fire site environment of gasoline as an accelerant. To perform the experiments, a pipette was adopted to monitor and generate a specific number of n-heptane drops onto the surface of a pure iron plate just beneath, the n-heptane was then ignited, after the combustion was completed the iron plate was soon cooling down to room temperature at the site. The microscopic morphology and phase composition of the corrosion products, as well as the distribution of surface particles were characterized by means of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) etc. The results showed that: Upon combustion of n-heptane, granular amorphous carbon is observed on the surface of pure iron as a result of high-temperature cracking reaction. The amount of deposited carbon is closely linked to the surface temperature of pure iron and n-heptane content at the site, and tends to accumulate at defects and nearby grain boundaries of the pure iron plate. The combustion of n-heptane creates a local oxidizing atmosphere at the accelerant interface, resulting in numerous defects on the surface of pure iron. This, in turn, promotes the flaking of the surface oxide scale. The insights gained in this study can help to identify the presence of accelerant at the fire scene.

Key wordsfire investigation    n-heptane    accelerant    simulated combustion    oxidation
收稿日期: 2023-05-19      32134.14.1005.4537.2023.165
ZTFLH:  TG172  
基金资助:江西省材料表面工程重点实验室开放课题(2021CLKF002)
通讯作者: 谢冬柏,E-mail: dbxie@aliyun.com,研究方向为高温氧化
Corresponding author: XIE Dongbai, E-mail: dbxie@aliyun.com
作者简介: 赖天,男,1998年生,硕士生
图1  模拟火场燃烧实验示意图
图2  不同助燃剂含量下纯Fe表面温度变化曲线
图3  Fe在不同含量正庚烷助燃剂燃烧环境暴露后的表面形貌
图4  纯Fe在不同含量正庚烷助燃的火场暴露后表面AFM分析结果
图5  纯Fe在含250 μL正庚烷助燃剂燃烧环境中暴露后表面XPS分析结果谱
AreaElement contentCOFe
1Mass fraction, %9.83.3286.88
Atomic fraction, %31.638.0460.33
2Mass fraction, %58.462.7538.79
Atomic fraction, %84.892.9912.11
表1  Fe在不同区域的EDS测试结果
图6  纯Fe在不同含量正庚烷助燃剂燃烧环境中暴露后SEM表面形貌
图7  纯Fe在含80 μL正庚烷助燃剂燃烧环境暴露前后表面金相照片
1 Sun Z W, Shi Y, Zhang G N, et al. Key factors about fire investigation: evolving mechanism-based utilization into reverse deduction[J]. Forensic Sci. Technol., 2022, 47: 261
1 孙振文, 石屹, 张冠男 等. 火灾调查中的关键要素演变及逆向推演[J]. 刑事技术, 2022, 47: 261
2 Baerncopf J, Hutches K. A review of modern challenges in fire debris analysis[J]. Forensic Sci. Int., 2014, 244: e12
doi: 10.1016/j.forsciint.2014.08.006
3 Nicdaéid N. Analysis of fire debris[A]. Houck M M. Encyclopedia of Forensic Sciences[M]. 3rd ed. London: Elsevier, 2023: 126
4 Martín-Alberca C, Ortega-Ojeda F E, García-Ruiz C. Analytical tools for the analysis of fire debris. A review: 2008-2015[J]. Anal. Chim. Acta, 2016, 928: 1
doi: S0003-2670(16)30549-9 pmid: 27251852
5 Pasternak Z, Avissar Y Y, Ehila F, et al. Automatic detection and classification of ignitable liquids from GC-MS data of casework samples in forensic fire-debris analysis[J]. Forensic Chem., 2022, 29: 100419
doi: 10.1016/j.forc.2022.100419
6 Low Y, Tyrrell E, Gillespie E, et al. Review: Recent advancements and moving trends in chemical analysis of fire debris[J]. Forensic Sci. Int., 2023, 345: 111623
doi: 10.1016/j.forsciint.2023.111623
7 Fernandes M S, Lau C M, Wong W C. The effect of volatile residues in burnt household items on the detection of fire accelerants[J]. Sci. Justice, 2002, 42: 7
doi: 10.1016/S1355-0306(02)71791-7
8 Almirall J R, Furton K G. Analysis and Interpretation of Fire Scene Evidence[M]. Boca Raton: CRC Press, 2004
9 Conner L, Chin S, Furton K G. Evaluation of field sampling techniques including electronic noses and a dynamic headspace sampler for use in fire investigations[J]. Sens. Actuators, 2006, 116B: 121
10 Xie D B, Shan G, Deng S, et al. Investigations on oxidation and microstructure evolution of pure Cu in simulated air-kerosene combustion atmospheres[J]. Fire Mater., 2017, 41: 614
doi: 10.1002/fam.v41.6
11 Xie D B, Shan G, Lv S L. Oxidation behavior of carbon steel in simulated kerosene combustion atmosphere: A valuable tool for fire investigations[J]. Fire Mater., 2018, 42: 156
doi: 10.1002/fam.v42.2
12 Xie D B, Wang W, Lv S L, et al. Effect of simulated combustion atmospheres on oxidation and microstructure evolution of aluminum alloy 5052[J]. Fire Mater., 2018, 42: 278
doi: 10.1002/fam.v42.3
13 Hong H, Xie D B, Duo S, et al. Investigating the oxidation behavior of carbon steel in fire scene: a new method for fire investigations[J]. ScienceAsia, 2020, 46: 59
doi: 10.2306/scienceasia1513-1874.2020.005
14 Xie D B, Hong H, Duo S, et al. Effect of kerosene combustion atmosphere on the mild steel oxide layer[J]. Sci. Rep., 2022, 12: 379
doi: 10.1038/s41598-021-04377-3 pmid: 35013478
15 López D A, Schreiner W H, de Sánchez S R, et al. The influence of carbon steel microstructure on corrosion layers: An XPS and SEM characterization[J]. Appl. Surf. Sci., 2003, 207: 69
doi: 10.1016/S0169-4332(02)01218-7
16 Lin S, Xu X J, Hu H J. Investigation on arson cases[J]. Fire Sci. Technol., 2009, 28: 621
16 林 松, 徐学军, 胡鸿俊. 放火案件调查[J]. 消防科学与技术, 2009, 28: 621
17 Gong J, Jin J, Zhang J Z, et al. Research progress on characteristics of combustion improver trace on the arson fire scene[J]. Fire Sci. Technol., 2021, 40: 594
17 龚 靳, 金 静, 张金专 等. 放火现场助燃剂燃烧痕迹特征研究进展[J]. 消防科学与技术, 2021, 40: 594
18 Huo E G, Zhang S J, Xin L Y, et al. Pyrolysis mechanism study of n-heptane as an endothermic hydrocarbon fuel: A reactive molecular dynamic simulation and density functional theory calculation study[J]. Comput. Theor. Chem., 2022, 1211: 113696
doi: 10.1016/j.comptc.2022.113696
19 Ding J X, Zhang L, Han K L. Thermal rate constants of the pyrolysis of n-Heptane[J]. Combust. Flame, 2011, 158: 2314
doi: 10.1016/j.combustflame.2011.04.015
20 Hong H, Duo S W, Xie D B. Oxidation behavior of Q235 carbon steel in ethanol combustion gas[J]. Corros. Sci. Prot. Technol., 2019, 31: 212
20 洪 昊, 多树旺, 谢冬柏. 乙醇助燃剂燃烧环境中Q235碳钢的氧化行为研究[J]. 腐蚀科学与防护技术, 2019, 31: 212
21 Bockhorn H. Soot Formation in Combustion: Mechanisms and Models[M]. Berlin, Heidelberg: Springer, 1994
22 Wang H, Frenklach M. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames[J]. Combust. Flame, 1997, 110: 173
doi: 10.1016/S0010-2180(97)00068-0
23 Frenklach M, Wang H. Detailed modeling of soot particle nucleation and growth[J]. Symp. (Int.) Combust., 1991, 23: 1559
doi: 10.1016/S0082-0784(06)80426-1
24 Wang Y, Chung S H. Soot formation in laminar counterflow flames[J]. Prog. Energy Combust. Sci., 2019, 74: 152
doi: 10.1016/j.pecs.2019.05.003
25 Young D J. Carburization and metal dusting[A]. CottisB, GrahamM, LindsayR, et al. Shreir's Corrosion[M]. Oxford: Elsevier, 2010: 272
26 Liu Q Y, Hu L, Deng L, et al. Study on fire behavior of cardboard box and n-heptane in confined space[J]. J. Zhejiang Univ. Technol., 2020, 48: 664
26 刘全义, 胡 林, 邓 力 等. 受限空间内正庚烷与瓦楞纸箱的火行为研究[J]. 浙江工业大学学报, 2020, 48: 664
27 Hillert M, Selleby M. Discussion of cementite layer formation and sooting[J]. Scr. Mater., 2010, 63: 1037
doi: 10.1016/j.scriptamat.2010.07.013
28 Xie D B, Shan G. Rapid identification of liquid accelerant in fire scene environment[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 74
28 谢冬柏, 单 国. 燃油火场环境中助燃剂的快速检验方法研究[J]. 中国腐蚀与防护学报, 2017, 37: 74
doi: 10.11902/1005.4537.2016.154
[1] 刘国强, 张东方, 陈昊翔, 范志宏. 带轧皮预锈钢筋在混凝土养护期间的自然钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 505-511.
[2] 王彤彤, 张隽睿, 高云, 高荣杰. NH4F-(NH4)2SO4 复合电解液中制备莲藕状TiO2 纳米管阵列及光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[3] 梁志远, 张超, 曲劲宇, 何建元, 郭亭山, 徐一鸣. 某燃气轮机燃烧室合金高温蒸汽氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 355-364.
[4] 王爽, 王资兴, 程晓农, 罗锐. 稀土La对钴基高温合金GH51881100℃下空气中氧化行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 221-228.
[5] 冯抗抗, 任延杰, 吕云蕾, 周梦妮, 陈荐, 牛焱. Si含量对四元Fe-20Ni-20Cr-ySi合金在900℃下氧化行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 100-106.
[6] 袁小虎, 李定骏, 王天剑, 郭显平, 张乃强, 朱忠亮. 超临界水环境中三种Ni-Cr涂层氧化特性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 119-129.
[7] 蒋光锐, 刘广会, 商婷. 热处理对ZnAlMg镀层组织与耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[8] 於琛钧, 张天翼, 张乃强, 朱忠亮. 组织老化对P92钢在超临界水中氧化行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[9] 任岩, 张鑫涛, 盖欣, 徐敬军, 张伟, 陈勇, 李美栓. 四元MAX(Cr2/3Ti1/3)3AlC2 在高温空气以及水蒸气气氛中的氧化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[10] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[11] 王军阳, 易戈文, 万善宏, 姜军. 钢材表面氧化铁皮结构演变机理与应用控制技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 948-956.
[12] 宇波, 李彰, 周凯旋, 田浩亮, 房永超, 张晓敏, 金国. MoSi2 改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[13] 袁磊, 谢新, 陈明辉, 李烽杰, 王福会. 20钢及其搪瓷涂层在400 ℃下的氧化和NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 890-895.
[14] 郭涛, 黄峰, 胡骞, 刘静. 9Ni钢铸坯在900~1250 ℃空气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[15] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.