|
|
裂变产物碲致高镍合金GH3535晶间腐蚀研究 |
杜鑫, 杜乾, 苏钲雄, 郭少强( ), 王盛( ) |
西安交通大学核科学与技术学院 西安 710049 |
|
Intergranular Corrosion of High Temperature Ni-based Alloy GH3535 Induced by Fission Product Tellurium |
DU Xin, DU Qian, SU Zhengxiong, GUO Shaoqiang( ), WANG Sheng( ) |
School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China |
引用本文:
杜鑫, 杜乾, 苏钲雄, 郭少强, 王盛. 裂变产物碲致高镍合金GH3535晶间腐蚀研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1157-1163.
Xin DU,
Qian DU,
Zhengxiong SU,
Shaoqiang GUO,
Sheng WANG.
Intergranular Corrosion of High Temperature Ni-based Alloy GH3535 Induced by Fission Product Tellurium[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1157-1163.
1 |
McCoy Jr H E. Status of materials development for molten salt reactors [R]. Oak Ridge: Oak Ridge National Laboratory, 1978
|
2 |
Cai X Z, Dai Z M, Xu H J. Thorium molten salt reactor nuclear energy system [J]. Physics, 2016, 45: 578
|
2 |
蔡翔舟, 戴志敏, 徐洪杰. 钍基熔盐堆核能系统 [J]. 物理, 2016, 45: 578
|
3 |
Guo S Q, Zhang J S, Wu W, et al. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications [J]. Prog. Mater. Sci., 2018, 97: 448
|
4 |
Xu Y X, Zeng C L. Corrosion of materials for molten salt reactor [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 211
|
4 |
徐雅欣, 曾潮流. 熔盐电堆的材料腐蚀 [J]. 中国腐蚀与防护学报, 2014, 34: 211
doi: 10.11902/1005.4537.2013.117
|
5 |
Wu J J, Wang Y L. Hot corrosion and protection of structural materials in molten salt reactor [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 193
|
5 |
吴家杰, 王艳丽. 熔盐堆用结构材料的热腐蚀及防护 [J]. 中国腐蚀与防护学报, 2022, 42: 193
doi: 10.11902/1005.4537.2021.070
|
6 |
Liu T, Dong J S, Xie G, et al. Corrosion behavior of GH3535 superalloy in FLiNaK molten salt [J]. Acta Metall. Sin., 2015, 51: 1059
doi: 10.11900/0412.1961.2015.00132
|
6 |
刘 涛, 董加胜, 谢 光 等. GH3535合金在FLiNaK熔盐中的腐蚀行为 [J]. 金属学报, 2015, 51: 1059
|
7 |
Keiser J R. Status of tellurium-Hastelloy N studies in molten fluoride salts [R]. Oak Ridge: Oak Ridge National Laboratory, 1977
|
8 |
Jia Y Y, Cheng H W, Qiu J, et al. Effect of temperature on diffusion behavior of Te into nickel [J]. J. Nucl. Mater., 2013, 441: 372
|
9 |
Cheng H W, Leng B, Chen K, et al. EPMA and TEM characterization of intergranular tellurium corrosion of Ni-16Mo-7Cr-4Fe superalloy [J]. Corros. Sci., 2015, 97: 1
|
10 |
Jia Y Y, Li Z F, Ye X X, et al. Effect of Cr contents on the diffusion behavior of Te in Ni-based alloy [J]. J. Nucl. Mater., 2017, 497: 101
|
11 |
Han F F, Wang X D, Jia Y Y, et al. Effect of grain boundary carbides on the diffusion behavior of Te in Ni-16Mo-7Cr base superalloy [J]. Mater. Charact., 2020, 164: 110329
|
12 |
Ball R G J, Cordfunke E H P, Konings R J M. Thermochemical data acquisition. Part II [R]. Luxembourg: Commission of the European Communities, 1992
|
13 |
Azad A M, Sreedharan O M. Chromium activity in the Cr-Te system using a CaF2 EMF method [J]. J. Nucl. Mater. 1989, 167: 89
|
14 |
Knacke O, Kubaschewski O, Hesselman K. Thermochemical Properties of Inorganic Substances [M]. Berlin: Springer-Verlag, 1991
|
15 |
Wang C Y, Han H, Wickramaratne D, et al. Diffusion of tellurium at nickel grain boundaries: a first-principles study [J]. RSC Adv., 2017, 7: 8421
|
16 |
Murarka S P, Anand M S, Agarwala R P. Diffusion of chromium in nickel [J]. J. Appl. Phys., 1964, 35: 1339
|
17 |
Zhu N Q, Li J C, Lu X G, et al. Experimental and computational study of diffusion mobilities for fcc Ni-Cr-Mo alloys [J]. Metall. Mater. Trans., A, 2015, 46A: 5444
|
18 |
Rellick J R, McMahon C J, Marcus H L, et al. The effect of tellurium on intergranular cohesion in iron [J]. Metall. Trans., 1971, 2: 1492
|
19 |
Jiang L, Fu C T, Leng B, et al. Influence of grain size on tellurium corrosion behaviors of GH3535 alloy [J]. Corros. Sci., 2019, 148: 110
doi: 10.1016/j.corsci.2018.12.007
|
20 |
Jiang L, Wang K, Leng B, et al. Tellurium segregation-induced intergranular corrosion of GH3535 alloys in molten salt [J]. Corros. Sci., 2022, 194: 109944
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|