Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (5): 609-616    DOI: 10.11902/1005.4537.2020.222
  研究报告 本期目录 | 过刊浏览 |
B10铜镍合金在高浓度NH4+污染海水中腐蚀研究
王家明1, 杨昊东1, 杜敏1(), 彭文山2, 陈翰林1, 郭为民2, 蔺存国2()
1.中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100
2.中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237
Corrosion of B10 Cu-Ni Alloy in Seawater Polluted by High Concentration of NH4+
WANG Jiaming1, YANG Haodong1, DU Min1(), PENG Wenshan2, CHEN Hanlin1, GUO Weimin2, LIN Cunguo2()
1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
全文: PDF(8171 KB)   HTML
摘要: 

通过比较B10铜镍合金在天然海水和含10 mg/L NH4+海水中的腐蚀行为,研究NH4+对B10铜镍合金的腐蚀影响机制。采用失重法测量平均腐蚀速率;采用动电位极化分析、电化学阻抗谱 (EIS) 研究界面腐蚀电化学特征;采用扫描电子显微镜 (SEM) 表征腐蚀产物形貌;采用能量色散光谱 (EDS) 和X射线光电子能谱 (XPS) 分析腐蚀产物成分。结果表明,NH4+的添加降低了腐蚀产物中具有保护作用的Cu2O成分的含量,提高了B10铜镍合金在海水中的腐蚀速率,促进了点蚀的发生。

关键词 NH4+污染海水B10铜镍合金Cu2O腐蚀产物膜    
Abstract

B10 Cu-Ni alloy is widely used in condenser and other facilities due to its good corrosion resistance in sea water. In practical application, it was found that the concentration of NH4+ was relatively high in sea water in the off shore port area and B10 Cu-Ni alloy was more likely to perforate. In this paper, the corrosion behavior of B10 Cu-Ni alloy in natural seawater and seawater containing 10 mg/L NH4+ was comparatively studied, in order to clarify the influence mechanism of NH4+ on the corrosion of B10 Cu-Ni alloy. The average corrosion rate, electrochemical characteristics, morphology and chemical composition of corrosion products of the steel were characterized by means of mass loss method, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) with EDS and X-ray photoelectron spectroscopy (XPS).The results indicated that the addition of NH4+ reduced the content of protective Cu2O in the corrosion products, thus increasing the corrosion rate of B10 Cu-Ni alloy in seawater and promoting the pitting tendency.

Key wordsNH4+ pollution    seawater    B10 Cu-Ni alloy    Cu2O    corrosion product film
收稿日期: 2020-11-04     
ZTFLH:  TG174  
基金资助:国家自然科学基金(U1706221)
通讯作者: 杜敏,蔺存国     E-mail: ssdm99@ouc.edu.cn;lincg@sunrui.net
Corresponding author: DU Min,LIN Cunguo     E-mail: ssdm99@ouc.edu.cn;lincg@sunrui.net
作者简介: 王家明,男,1996年生,硕士生

引用本文:

王家明, 杨昊东, 杜敏, 彭文山, 陈翰林, 郭为民, 蔺存国. B10铜镍合金在高浓度NH4+污染海水中腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 609-616.
Jiaming WANG, Haodong YANG, Min DU, Wenshan PENG, Hanlin CHEN, Weimin GUO, Cunguo LIN. Corrosion of B10 Cu-Ni Alloy in Seawater Polluted by High Concentration of NH4+. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 609-616.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.222      或      https://www.jcscp.org/CN/Y2021/V41/I5/609

图1  B10铜镍合金在两种海水体系中的腐蚀速率
图2  B10铜镍合金在腐蚀介质中的开路电位
图3  B10铜镍合金在腐蚀介质中的电化学阻抗图
图4  模拟符合EIS数据的等效电路的物理模型
MediumTime / dRs / Ω·cm2Cdl1 / μF·cm-2nd1Rf / Ω·cm2Cdl2 / μF·cm-2nd2Rct / Ω·cm2
Seawater112.3187.40.61424843078.30.77454748
714.1276.30.76965322274.10.814217645
1519.7768.20.81415150169.20.886916314
2022.3135.10.84325927034.50.887616239
2420.2119.50.75543740223.60.793312778
3018.1555.40.77424732144.20.796413312
Seawater with NH4+113.3588.60.58314433987.40.74214938
724.3179.50.71674817477.30.75459945
1510.3666.40.74945132571.60.89559866
2023.3332.10.81254254338.50.81469742
2415.1541.60.72474798027.50.80322389
3016.1459.10.76884543646.30.77424445
表1  B10铜镍合金在腐蚀介质中的EIS拟合数据
图5  B10铜镍合金在两种海水体系中的极化曲线
MediumTime / dOCPAg/AgCl / Vba / mV·dec-1Icorr / μA·cm-2Ecorr vs Ag/AgCl / V
Seawater1-0.24338.641.60-0.252
15-0.25148.81.28-0.259
30-0.31948.10.33-0.312
Seawater with NH4+1-0.24342.12.21-0.249
15-0.23747.81.59-0.249
30-0.30367.61.61-0.298
表2  B10铜镍合金极化曲线拟合数据
图6  B10铜镍合金在腐蚀介质中腐蚀30 d后腐蚀产物和除锈基底的SEM像
图7  B10铜镍合金在两种海水体系中浸泡30 d后腐蚀产物的EDS谱
ElementNatural seauaterSeawater with NH4+
Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %
Mg0.710.940.480.64
Al0.340.401.211.46
S0.940.951.041.05
Cl1.541.401.441.32
Ca0.400.320.530.43
Mn0.620.370.640.38
Fe4.672.693.041.77
Ni17.569.6214.538.05
Cu42.5021.5047.5524.36
表3  B10铜镍合金在两种海水体系中浸泡30 d后的EDS结果
图8  B10铜镍合金在天然海水和含NH4+海水中浸泡30 d后腐蚀产物的XPS谱
图9  XPS谱对应的化合物占比图
1 Liu T J, Chen H P, Zhang W F, et al. Accelerated corrosion behavior of B10 Cu-Ni alloy in seawater [J] J. Mater. Eng., 2017, 45(5): 31
1 刘天娇, 陈惠鹏, 张卫方等. B10铜镍合金海水加速腐蚀行为 [J]. 材料工程, 2017, 45(5): 31
2 Shi Z Y, Liu B, Liu Y, et al. Progress of corrosion behavior and anti-corrosion technology for typical copper-nickel alloys under marine environment [J]. Equip. Environ. Eng., 2020, 17(8): 38
2 石泽耀, 刘斌, 刘岩等. 典型铜镍合金在海洋环境中腐蚀行为与防护技术研究进展 [J]. 装备环境工程, 2020, 17(8): 38
3 Zhu X L, Lin L Y, Lei T Q. Review on corrosion behaviors of Cu-Ni alloys in seawater [J]. Corros. Sci. Prot. Technol., 1997, 9(1): 48
3 朱小龙, 林乐耘, 雷廷权. Cu-Ni合金海水腐蚀行为研究进展 [J]. 腐蚀科学与防护技术, 1997, 9(1): 48
4 Yang B J, Chen X F, Yao J H, et al. Corrosion behavior of copper and its alloys in freshwater-seawater alternate circumstance [J]. Equip. Environ. Eng., 2017, 14(2): 24
4 杨博均, 陈翔峰, 姚敬华等. 铜及铜合金在淡海水交替自然环境条件下的腐蚀行为研究 [J]. 装备环境工程, 2017, 14(2): 24
5 Chen H Y, Zhu Y L. Selective corrosion of BFe10-1-1 alloy in NaCl solution [J]. Corros. Prot., 2006, 27: 404
5 陈海燕, 朱有兰. B10铜镍合金在NaCl溶液中腐蚀行为的研究 [J]. 腐蚀与防护, 2006, 27: 404
6 Dowsett M, Adriaens A, Martin C, et al. The use of synchrotron X-rays to observe copper corrosion in real time [J]. Anal. Chem., 2012, 84: 4866
7 Ji S Y, Wang C G, Cai W, et al. Corrosion mechanism of Cu-Ni alloy cooler at Xiluodu hydropower station [J]. Mech. Electr. Tech. Hydro. Sta., 2019, 42(7): 71
7 姬升阳, 王长罡, 蔡伟等. 溪洛渡水电站铜镍合金冷却器腐蚀机理研究 [J]. 水电站机电技术, 2019, 42(7): 71
8 Cheng D B, Guo Y, Liu X H, et al. Studies on corrosion and protection of heat exchange tubes of B30 copper-nickel alloy [J]. Dev. Appl. Mater., 2020, 35(1): 84
8 程德彬, 郭悦, 刘雪辉等. B30铜镍合金换热管腐蚀与防护研究进展 [J]. 材料开发与应用, 2020, 35(1): 84
9 Zhao Y H, Lin L Y, Cui D W. Localized corrosion of copper and its alloys in seawater at four test sits along china coast for 16 years [J]. Corros. Sci. Prot. Technol., 2003, 15: 266
9 赵月红, 林乐耘, 崔大为. 铜及铜合金在我国实海海域暴露16年局部腐蚀规律 [J]. 腐蚀科学与防护技术, 2003, 15: 266
10 Zhu X L, Li Z J, Xu J. Progress in research on formation and rupture mechanism of Seawater corrosion products of Cu-NI alloy [J]. Chin. J. Rare Met., 1997, 21(6): 463
10 朱小龙, 李中建, 徐杰. Cu-Ni合金海水腐蚀产物膜的形成与破裂机制研究进展 [J]. 稀有金属, 1997, 21(6): 463
11 Wu Q M, Chen S Z, Yu Z G, et al. Dissolved inorganic nitrogen in the Southern Yellow Sea [J]. J. Ocean Univ. Qingdao, 2001, 31: 129
11 吴强明, 陈淑珠, 于志刚等. 黄海南部的溶解无机氮 [J]. 青岛海洋大学学报 (自然科学版), 2001, 31: 129
12 Sun P X, Wang Z L, Zhan R, et al. Study on dissolved inorganic nitrogen distributions and eutrophication in the Jiaozhou bay [J]. Adv. Mar. Sci., 2005, 23: 466
12 孙丕喜, 王宗灵, 战闰等. 胶州湾海水中无机氮的分布与富营养化研究 [J]. 海洋科学进展, 2005, 23: 466
13 Zhao X D, Zhu C J, Ju P, et al. The forms and distributions of nitrogen of seawater in eastern Jiaozhou bay [J]. Mar. Sci., 1998, 12 (1): 3
13 赵夕旦, 祝陈坚, 举鹏等. 胶州湾东部海水中氮的含量和分布 [J]. 海洋科学, 1998, 12(1): 3
14 Zhang Z B, Liu L S. Marine Chemistry Marine Chemistry [M]. Ji’nan: Shandong Education Press, 2004
14 张正斌, 刘莲生. 海洋化学 [M]. 济南: 山东教育出版社, 2004
15 Yu H, Ding L, Liu S W, et al. Research progress on determination of ammonia nitrogen in seawater [J]. Chem. Bioeng., 2017, 34(5): 1
15 于涵, 丁兰, 刘淑文等. 海水氨氮检测技术研究进展 [J]. 化学与生物工程, 2017, 34(5): 1
16 Pugh E N, Montague W G, Westwood A R C. Stress-corrosion cracking of copper [J]. Corros. Sci., 1966, 6: 345
17 Lobnig R E, Frankenthal R P, Siconolfi D J, et al. The effect of submicron ammonium sulfate particles on the corrosion of copper [J]. J. Electrochem. Soc., 1993, 140: 1902
18 Al-Hashem A, Carew J. The use of electrochemical impedance spectroscopy to study the effect of chlorine and ammonia residuals on the corrosion of copper-based and nickel-based alloys in seawater [J]. Desalination, 2002, 150: 255
19 Wang J H, Jiang X X, Li S Z. Corrosion wear behavior of copper alloys in 3.5%NaCl+NH3(NH4+) solution [J]. Acta Metall. Sin., 1997, 33(12): 1268
19 王吉会, 姜晓霞, 李诗卓. 铜合金在3.5%NaCl+NH3(NH4+) 溶液中的腐蚀磨损行为 [J]. 金属学报, 1997, 33(12): 1268
20 Zhang J, Li Z, Tang N, et al. Study on corrosion behavior of rare-earth aluminum brass in NaCl+NH4Cl solution [J]. Trans. Mater. Heat Treat., 2009, 30(1): 104
20 张娟, 李周, 唐宁等. 稀土铝黄铜合金在NaCl+NH4Cl腐蚀液中的腐蚀行为 [J]. 材料热处理学报, 2009, 30(1): 104
21 Huang G S, Liu G Z, Duan D X, et al. Effects of ammonia producing bacteria on corrosion of B30 [J]. Corros. Prot., 2005, 26 (8): 333
21 黄国胜, 刘光洲, 段东霞等. 产氨菌对B30铜镍合金腐蚀的影响 [J]. 腐蚀与防护, 2005, 26(8): 333
22 Cartere T W, Verley K S. Coordination Chemistry Research Progress [M]. Hauppauge, NY: Nova Science Publishers, 2008
[1] 马士德, 刘欣, 王在东, 任亚东, 邰余, 韩文, 段继周. 普碳钢表面锌防护层在青岛中港海水中耐蚀与防污损性能对比研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 585-594.
[2] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[3] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[4] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[5] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[6] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[7] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[8] 杨丹,李定林,黄彦良,华丕龙,赵霞,彭鹏,王秀通. 海水抽水蓄能电站的金属腐蚀和选材问题研究现状[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
[9] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[10] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[11] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[12] 鲍明昱, 任呈强, 胡静思, 刘博, 李佳蒙, 王丰, 刘丽, 郭小阳. 油气管材应力诱导腐蚀电化学行为探讨[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[13] 赵洪涛, 陆卫中, 李京, 郑玉贵. 无溶剂环氧防腐涂层在不同流速模拟海水冲刷条件下的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[14] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[15] 陶永奇,刘刚,黎业生,曾志翔. 海水环境下2024铝合金腐蚀磨损性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 587-594.